AMPHIPOL BIBLIOGRAPHY: an exhaustive list of publications

2016


  1. Botte, M., Zaccai, N.R., Nijeholt, J.L., Martin, R., Knoops, K., Papai, G., Zou, J., Deniaud, A., Karuppasamy, M., Jiang, Q., Roy, A.S., Schulten, K., Schultz, P., Rappsilber, J., Zaccai, G., Berger, I., Collinson, I. & Schaffitzel, C.(2016). A central cavity within the holo-translocon suggests a mechanism for membrane protein insertion. Sci Rep 6:38399.[PubMed].
  2. Bugge, K., Papaleo, E., Haxholm, G.W., Hopper, J.T., Robinson, C.V., Olsen, J.G., Lindorff-Larsen, K. & Kragelund, B.B.(2016). A combined computational and structural model of the full-length human prolactin receptor. Nat Commun. 7:11578.[PubMed].
  3. Byrne, E.F., Sircar, R., Miller, P.S., Hedger, G., Luchetti, G., Nachtergaele, S., Tully, M.D., Mydock-McGrane, L., Covey, D.F., Rambo, R.P., Sansom, M.S., Newstead, S., Rohatgi, R. & Siebold, C.(2016). Structural basis of Smoothened regulation by its extracellular domains. Nature 535(7613):517-22[PubMed].
  4. Casiraghi, M.; Damian, M.; Lescop, E.; Point, E.; Moncoq, K.; Morellet, N.; Levy, D.; Marie, J.; Guittet, E.; Banères, J.-L.; Catoire, L. J. Functional Modulation of a G Protein-Coupled Receptor Conformational Landscape in a Lipid Bilayer. J. Am. Chem. Soc. 2016, 138 (35), 11170–11175 https://doi.org/10.1021/jacs.6b04432.[PubMed].
  5. Chen, Y., Clarke, O.B., Kim, J., Stowe, S., Kim, Y.K., Assur, Z., Cavalier, M., Godoy-Ruiz, R., von Alpen, D.C., Manzini, C., Blaner, W.S., Frank, J., Quadro, L., Weber, D.J., Shapiro, L., Hendrickson, W.A.& Mancia, F. (2016). Structure of the STRA6 receptor for retinol uptake. Science. 353;(6302):doi: 10.1126/science.aad8266.[PubMed].
  6. Constantine, M., Liew, C.K., Lo, V., Macmillan, A., Cranfield, C.G., Sunde, M., Whan, R., Graham, R.M. & Martinac, B. (2016). Heterologously-expressed and Liposome-reconstituted Human Transient Receptor Potential Melastatin 4 Channel (TRPM4) is a Functional Tetramer. Sci Rep. 6:19352 [PubMed].
  7. Ekiert, D. C.; Bhabha, G.; Greenan, G.; Ovchinnikov, S.; Cox, J. S.; Vale, R. D. (2016) Architectures of a Lipid Transport Systems for the Bacterial Outer Membrane. bioRxiv 064360 https://doi.org/10.1101/064360.
  8. Gao, Y., Cao, E., Julius, D. & Cheng, Y. (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534(7607):347-51 [PubMed].
  9. Jeong, H., Kim, J.S., Song, S., Shigematsu, H., Yokoyama, T., Hyun, J. & Ha, N.C. (2016) Pseudoatomic Structure of the Tripartite Multidrug Efflux Pump AcrAB-TolC Reveals the Intermeshing Cogwheel-like Interaction between AcrA and TolC. Structure. 524(2):272-6( [PubMed].
  10. Kumar, S., Bagchi, S., Prasad, S., Sharma, A., Kumar, R., Kaur, R., Singh, J, & Bhondekar, A.P. (2016) Bacteriorhodopsin-ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour. Beilstein J Nanotechnol. 7501-510. [PubMed].
  11. Lee, S. C.; Khalid, S.; Pollock, N. L.; Knowles, T. J.; Edler, K.; Rothnie, A. J.; R.T.Thomas, O.; Dafforn, T. R. (2016) Encapsulated Membrane Proteins: A Simplified System for Molecular Simulation. Biochimica et Biophysica Acta (BBA) - Biomembranes 1858 (10), 2549–2557 https://doi.org/10.1016/j.bbamem.2016.02.039. [PubMed].
  12. Letts, J.A., Fiedorczuk, K., Sazanov & L.A.(2016) The architecture of respiratory supercomplexes. Nature 537(7622):644-648. [PubMed].
  13. Marty, M.T., Hoi, K.K. & Robinson, C.V.(2016) Interfacing Membrane Mimetics with Mass Spectrometry. Acc Chem Res [Epub ahead of print]. [PubMed].
  14. Mazhab-Jafari M.T., Rohou A., Schmidt C., Bueler S.A., Benlekbir S., Robinson C.V., Rubinstein J.L.(2016) Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase. Nature 539(7627):118-122 [PubMed].
  15. Popot, J.-L. & Engelman D.M. (2016) Membranes Do Not Tell Proteins How To Fold. Biochemistry 55(1):5-18. [PubMed].
  16. Pombo‐García, K.; Weiss, S.; Zarschler, K.; Ang, C.-S.; Hübner, R.; Pufe, J.; Meister, S.; Seidel, J.; Pietzsch, J.; Spiccia, L.; Stephan, H.; Graham, B. Zwitterionic Polymer-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Low Protein Interaction and High Biocompatibility. (2016) ChemNanoMat 2 (10), 959–971 https://doi.org/10.1002/cnma.201600233. [PMAL-c8]

Page: 1, 2