AMPHIPOL BIBLIOGRAPHY: an exhaustive list of publications


  1. Basit, H., Sharma, S., Van der Heyden, A., Gondran, C., Breyton, C., Dumy, P., Winnik, F. M. & Labbé, P. (2012).
    Amphipol mediated surface immobilization of FhuA: a platform for label-free detection of the bacteriophage protein pb5.
    Chem. Commun. 48, 6037-6039 [PubMed].

  2. Bazzacco, P., Billon-Denis, E., Sharma, K. S., Catoire, L. J., Mary, S., Le Bon, C., Point, E., Banères, J.-L., Durand, G., Zito, F., Pucci, B. & Popot, J.-L. (2012).
    Non-ionic homopolymeric amphipols: Application to membrane protein folding, cell-free synthesis, and solution NMR.
    Biochemistry 51, 1416-1430 [PubMed].

  3. Bechara, C., Bolbach, G., Bazzacco, P., Sharma, S. K., Durand, G., Popot, J.-L., Zito, F. & Sagan, S. (2012).
    MALDI mass spectrometry analysis of membrane protein/amphipol complexes.
    Anal. Chem. 84, 6128-6135 [PubMed].

  4. Damian, M., Marie, J., Leyris, J.-P., Fehrentz, J.-A., Verdié, P., Martinez, J., Banères, J.-L. & Mary, S. (2012).
    High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs.
    J. Biol. Chem. 287, 3630-3641 [PubMed].

  5. Deniaud, A., Panwar, P., Frelet-Barrand, A., Bernaudat, F., Juillan-Binard, C., Ebel, C., Rolland, N. & Pebay-Peyroula, E. (2012).
    Oligomeric status and nucleotide binding properties of the plastid ATP/ADP transporter 1: toward a molecular understanding of the transport mechanism. PLoS One 7(3):e32325 [PubMed].

  6. Kyrychenko, A., Rodnin, M. V., Vargas, M. U., Sharma, S. K., Durand, G., Pucci, B., Popot, J.-L. & Ladokhin, A. S. (2012).
    Folding of diphteria toxin T-domain in the presence of amphipols and fluorinated surfactants: Toward thermodynamic measurements of membrane protein folding.
    Biochim. Biophys. Acta
    1818, 1006-1012 [PubMed].
  1. Giusti, F., Popot, J.-L. & Tribet, C. (2012).
    Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28, 10372-10380 [PubMed].

  2. Qi L., Wu L., Zheng S., Wang Y., Fu H., Cui D. (2012).
    Cell-penetrating magnetic nanoparticles for highly efficient delivery and intracellular imaging of siRNA.
    Biomacromolecules, 13(9), 2723-2730 [PubMed].

  3. Leney A.C., McMorran L.M., Radford S.E., Ashcroft A.E.(2012).
    Amphipathic polymers enable the study of functional membrane proteins in the gas phase.
    Anal. Chem., 84(22), 9841-9847 [PubMed].

  4. Ma, D., Martin, N., Herbet, A., Boquet, D., Tribet, C. & Winnik, F. M. (2012).
    The thermally induced aggregation of immunoglobulin G in solution is prevented by amphipols.
    Chem. Lett. 41,1380-1382, DOI: 10.1246/cl.2012.1380 .

  5. S. Sebai, D Milioni, A Walrant, I. Alves, S. Sagan, C. Huin, L. Auvray, D. Massotte, S. Cribier, and C. Tribet (2012)
    Photocontrol of the Translocation of Molecules, Peptides, and Quantum Dots through Cell and Lipid Membranes Doped with Azobenzene Copolymers.
    Angewandte Chemie Int Ed., 124(9), 2174-2178 [PubMed].

  6. Sharma, K. S., Durand, G., Gabel, F., Bazzacco, P., Le Bon, C., Billon-Denis, E., Catoire, L. J., Popot, J.-L., Ebel, C. & Pucci, B. (2012).
    Non-ionic amphiphilic homopolymers: Synthesis, solution properties, and biochemical validation .
    Langmuir 28, 4625–4639 [PubMed].