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A B S T R A C T

Replicative senescence, induced by telomere shortening, exhibits considerable asynchrony and heterogeneity,
the origins of which remain unclear. Here, we formally study how telomere shortening mechanisms impact on
senescence kinetics and define two regimes of senescence, depending on the initial telomere length variance. We
provide analytical solutions to the model, highlighting a non-linear relationship between senescence onset and
initial telomere length distribution. This study reveals the complexity of the collective behavior of telomeres as
they shorten, leading to senescence heterogeneity.

1. Introduction

Telomeres, the ends of eukaryote chromosomes, are poised in a
dynamic equilibrium controlled by two processes: limited telomere
shortening at each cell division and elongation by telomerase, a
dedicated holoenzyme able to generate de novo telomere sequence.
When telomerase is not expressed, as in human somatic cells, or is
experimentally mutated in model organisms such as Saccharomyces
cerevisiae (Lundblad and Szostak, 1989), telomeres only shorten and
after many divisions the cell enters replicative senescence, a permanent
cell cycle arrest induced by short telomeres that elicit a DNA damage
response. Replicative senescence is implicated in organismal ageing
and is a potent barrier to cancer emergence, but its remarkable
asynchrony and heterogeneity remain a challenge for investigating
the exact relationship between initial telomere length distribution and
senescence onset.

Telomere shortening is the unavoidable consequence of the end-
replication problem (Olovnikov, 1973; Watson, 1972; Soudet et al.,
2014). In most examined species, telomeres end with a 5′ to 3′ singled-
stranded DNA overhang (Fig. 1) (Hemann and Greider, 1999;
Henderson and Blackburn, 1989; Klobutcher et al., 1981; Makarov
et al., 1997; McElligott and Wellinger, 1997; Raices et al., 2008; Riha
et al., 2000; Wellinger et al., 1993). When the replication fork reaches
the end of the chromosome, the processing of the last Okazaki fragment
leaves a gap at the lagging strand, which recreates the single-stranded

overhang of the parental telomere (Fig. 1). On the leading strand, after
replication, complex maturation steps involving resection and fill-in
also regenerate the overhang structure (Larrivée et al., 2004; Faure
et al., 2010; Chai et al., 2006; Wu et al., 2012; Soudet et al., 2014).
Regardless of these maturation steps, the leading strand template for
replication is shorter than the lagging strand one, thus generating after
replication two new telomeres of different lengths, one unchanged
compared to the parental telomere and the other shorter by exactly the
length of the overhang, as illustrated in Fig. 1. Previous mathematical
models of telomere shortening also based on the end-replication
problem (Levy et al., 1992; Arino et al., 1995; Olofsson and Kimmel,
1999; Arkus, 2005) did not consider the maturation of the leading
strand telomere that generates a 3′-end overhang identical to the one
on the lagging strand. This maturation step is widely conserved
throughout species with the notable exception of angiosperm plants
that display a blunt end at the leading telomere (Riha et al., 2000). We
also note that other mathematical models examined higher level
structures such as t-loops (Griffith et al., 1999; Rodriguez-Brenes and
Peskin, 2010), or additional telomere states or breaking mechanisms
(Kowald, 1997; Rubelj and Vondracek, 1999; Proctor and Kirkwood,
2002, 2003), such as damage due to oxidative stress (von Zglinicki,
2002). In S. cerevisiae, however, oxidative stress does not significantly
alter telomere length (Romano et al., 2013) and the end-replication
problem is the main mechanism of telomere shortening.

Consistently, on average, telomeres shorten at a constant rate of
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exactly half of the overhang length per division. However, while
studying the average is informative of the global regulation and
homeostasis of telomere length, it misses important contributions of
the asymmetry of telomere replication mechanism to the overall
telomere length distribution and to the heterogeneity of the onset of
senescence. Taking this asymmetry into account, the shortening of a
telomere in a cell lineage, defined as a random succession of mitotically
related cells (Xu et al., 2015), is probabilistic and follows a Bernoulli
process. Additionally, if the two ends of a given chromosome are
considered together, the 3′-end at one telomere belongs to the same
DNA strand as the 5′-end on the other telomere of the same
chromosome, implying that the asymmetry at one telomere is inverted
compared to the other (Fig. 1). We define this relationship between the
two ends of the same chromosome as a coupling mechanism, which
adds another layer of constraint and will also be modeled here.

In this article, we study the consequences of the asymmetry and the
coupling on the distribution and the dynamics of telomere length in
two distinct phases: at steady state in the presence of telomerase and in
a strictly shortening phase without telomerase. We show that the
robustness of telomerase recruitment impacts on the variance of the
steady-state distribution of telomere length. In turn, this variance
defines different regimes of senescence. In a regime of low initial
variance, senescence onset cannot be linearly inferred from the average
telomere length or even the length of the shortest telomere and we
provide an asymptotic expansion to account for this phenomenon. In
contrast, a high variance implies a linear correlation between the initial
shortest telomere and senescence onset. We provide analytical solu-
tions to the different models we describe and suggest applications for
the inference of the initial telomere length distribution from experi-
mental measurements of senescence onset.

2. Telomeres evolving with telomerase

We first describe the most general model, corresponding to a
lineage of haploid yeast cells dividing in the presence of active
telomerase. The two telomeres of a given chromosome at generation
n, called L L( , )n n

1 2 , are coupled as defined above and the 32 telomeres of
the cell shorten according to a Bernoulli random variable Bn of
parameter 1/2: if B = 1n , then L1

n is shortened by a nucleotides,
whereas L2

n is preserved, and conversely if B = 0n . Telomerase adds
new telomere sequences preferentially to shorter telomeres (Teixeira
et al., 2004; Britt-Compton et al., 2009), behavior that we capture by
introducing Cn

i , i ∈ {1, 2}, Bernoulli random variables of parameter
f L( )n

i , according to Xu et al. (2013), where f has the shape shown in
Fig. 2 (a) and Lin is the length of the telomere at the extremity i before
replication. The shape of f is such that below a length threshold Ls, the
Bernoulli random variable Cn

i equals 1, that is telomerase is always
active. For a telomere longer than Ls, the probability of {C = 1}n

i

decreases to zero, meaning that the longer the telomere, the less likely
it is to be elongated by telomerase. Since the number of nucleotides
added by telomerase is independent of the length of the telomere
(Teixeira et al., 2004; Xu et al., 2013), we introduce n

1 and n
2 two

independent geometric random variables of parameter p, independent
of all the other quantities (including L L,n n

1 2), which correspond to the
number of nucleotides added by telomerase. As a result, for any given
chromosome the 2-valued process L L( , )n n

1 2 follows:
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where x x= max(0, )+ is x if x > 0 and 0 otherwise. Telomere length is
nearly always positive because, in the presence of telomerase, a
telomere shorter than L > 0s is elongated with probability 1, while in
the absence of telomerase, senescence is triggered before the short

Fig. 1. Scheme of a chromosome bearing two telomeres and undergoing replication.
Telomeres end with a 3′ overhang of length a (measured to be 5–10 nucleotides in yeast
(Soudet et al., 2014), chosen here as a=1 or 7 for theoretical or numerical purposes,
respectively). After DNA replication, each telomere generates, through either the leading
or the lagging strand replication machineries, two new telomeres of different lengths. The
coupling effect between the two ends of the same chromosome imposes that only one of
the two is shortened while the other retains the parental length.

Fig. 2. Steady-state telomere length distribution in the presence of telomerase. (a) and
(b) Probability of recruitment and action of telomerase, as modeled from Teixeira et al.
(2004) with a length threshold Ls or simplified with a sharp switch occurring at is. (c)
Simulation of the steady-state distribution of telomere length using either (a) (black) or
(b) (grey) to describe telomerase recruitment. is was set so as to reach the same mean in
the steady-state distribution (Appendix B).
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telomere reaches 0 (Bourgeron et al., 2015). Using the same Bernoulli
random variable Bn for Ln

1 and Ln
2 mathematically defines the

coupling between the two telomeres.
To characterize the steady state of telomere length distribution, we

focus on one telomere—because as an approximation, telomeres of
different chromosomes are assumed to be independent (Shampay and
Blackburn, 1988)—, and consider the projection of the first coordinate
of a chromosome in order to compute its equilibrium. We will analyze
the coupling effect in more depth in the second regime without
telomerase. Our model thus becomes:

L L a= ( − ·B ) + C ·n n n n n+1
+ (2)

where Ln is the length of a given telomere, Ln+1 the length of one of the
two daughter telomeres, n a geometric random variable of parameter
p ∈ (0, 1). An averaged version of this model has been studied in Xu
et al. (2013); Dao Duc and Holcman (2013) and used in Bourgeron
et al. (2015), where instead of being stochastic, telomere shortening
was chosen to be deterministic with a constant value of a/2. To make
our computations fully explicit without betraying the principles of the
biological mechanism, instead of f, we consider a sharp threshold at a
value is (Fig. 2b). Our model becomes:

L L a= ( − ·B ) + ·n n n n L i+1
+

{ ≤ }n s (3)

Independently of the value of is, the Markov chain L( )n n≥0 defined
by (3) has a unique equilibrium distribution L∞ and the generating
function of L∞ is characterized by the equality:
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where π L j= ( = )j ∞ ,  S u u π u( ) = ( ) = ∑k
L

L k j
k

j
j
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∞

∞ and q p= 1 − .
Appendix A gives a proof of this result and explains how to get a

fully explicit expression for the distribution L∞ from Eq. (4). This
calculation reveals how the parameters a and p affect the steady-state
distribution.

The choice of the value of is according to biological experiments is
explained in Appendix B. We find that the variance of the steady-state
telomere length distribution obtained using the simplified model (3) is
significantly smaller than the one with the complete model (2) (Fig. 2c
in black and grey, respectively; 37 bp as compared to 101 bp),
demonstrating that the residual recruitment of telomerase to rather
long telomeres strongly contributes to the spread of the steady-state
distribution of telomere length. In turn, the variance of this distribu-
tion is critical for determining the onset of senescence and its
heterogeneity, as we show below. Thus, the mode of recruitment and
activation of telomerase, dependent on the biochemical properties of
the holoenzyme and on its interactions with telomeric proteins
(Wellinger and Zakian, 2012), controls key features of senescence once
telomerase is removed.

3. Telomeres evolving without telomerase

We then analyze the consequences of the steady-state distribution
on the onset of senescence, meaning the number of generations
undergone by a given cell lineage until it enters senescence. We simply
call it time of senescence, denoted by T. One practical goal of this
section is to derive the parameters of the initial distribution from the
time of senescence, which is useful for experimentalists. In senescing
cells, telomerase is inactive and when the shortest telomere reaches a
threshold S, the cell enters replicative senescence and stops dividing
(Abdallah et al., 2009; Lundblad and Szostak, 1989; Hemann et al.,
2001; Zou et al., 2004; Armanios et al., 2009). A haploid yeast cell has
16 chromosomes and thus 32 telomeres. Mathematically, we consider
the vector L L L( , ,…, )n n n

1 2 32 of these 32 telomere lengths at generation n.

Because each chromosome behaves independently (Shampay and
Blackburn, 1988), we can start by studying one chromosome and the
behavior of the 16 will easily follow. More precisely, the vector
L L L( , ,…, )n n n

1 2 32 can be seen as a family X Y( , )n
i

n
i

i1≤ ≤16 of 16 independent
identically distributed couples each representing the two telomeres of a

chromosome, with X Y Π( , ) ∼i i dist
0 0

.
. The time of senescence is mathema-

tically expressed as:

⎧⎨⎩
⎫⎬⎭T n X Y S= inf ≥ 0, min [min( , )] < .

i
n
i

n
i

1≤ ≤16

Normalizations. As telomeres can only shorten, we consider the
shortening length to be a=1. For numerical estimations of the time of
senescence, we will divide our results by a=7 to obtain biologically
relevant values. Moreover, we can choose S=0 by simply translating the
initial state by S. These assumptions are made in all following
calculations unless stated otherwise.

Distribution of the Time of Senescence. Under these normal-
ization conditions, we find that the distribution of the random variable
T is fully explicit:
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In particular, its expectation can be written as a function of π as
follows:
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See Appendix C for the proof. Because of the difficulty to invert this
formula, we choose to study separately the influence of the mean and
the variance of the initial state on the time of senescence. Thus, we first
consider a deterministic and constant initial state X x=0 0:

k L L x= 1,…,32, = ( )≕k
0 ∞ 0

We define Tx
1
0 as the first time one of two coupled telomeres reaches

zero both starting from x0, and Tx0 as the time of senescence of the
whole cell when the initial state is constant and equals x0.

Almost surely, x T x≤ ≤ 2x0
1

00 , this implies that  T n( > ) = 0x
1
0 for

n x≥ 2 0, and  T n( ≥ ) = 1x
1
0 for n x< 0. For x n x≤ ≤ 2 − 10 0 , the law of

Tx
1
0 is given by:
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The expected time of senescence is then:
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We then perform an asymptotic expansion of  T( )x0 for large values
of x0, which is numerically justified (Appendix B and Fig. 2c). At the
first order the mean behavior prevails:

 T x( ) ∼ 2 .x
1

00 (8)

Concerning the second order, we obtain the following convergence
in distribution:

x T
x

N N dist2 −
⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ , with ∼ . (0, 2).x

x

dist0
1

0 →+∞

.0

0 (9)

See Appendix D for proofs of these results.
The asymptotic development of the time of senescence for one

chromosome Tx
1
0 allows us to derive an approximation of the expected

time of senescence (7) by replacing the law of Tx
1
0 by its asymptotic (9):

S. Eugène et al. Journal of Theoretical Biology 413 (2017) 58–65

60



 

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

∑

∑

T x x x N n

x k
x

( ) ≈ + [ (2 − > )]

= + erf
2

,

x
n x

x

k

x

0
=

2 −1

0 0
16

0
=0

−1

0

16

0
0

0

0

(10)

where erf is the error function defined as:

∫x
π

e terf = 2 d .
x

t
0

− 2

We find that the expansion (10) is hardly distinguishable from the
theoretical process (6), as shown in simulations (compare grey and
dashed black lines in Fig. 3 (a)) and can thus be directly used to
estimate the mean of the initial state in experimental studies.

Influence of the initial variance on the time of senescence.
Now, to study only the influence of the initial variance, we consider that
each initial telomere is uniformly distributed in the interval
 L σ L σ[ ( ) − , ( ) + ]∞ ∞ and simulate the expected time of senescence
as a function of σ (Fig. 3b). When σ has large values, there is a higher
probability that the initial shortest telomere of (L L,…,0

1
0
32) is far from

the mean  L( )∞ and, thus, that it remains the shortest one until
senescence. We therefore expect, for large enough value of σ (Fig. 3b),
that the time of senescence is asymptotically equivalent to the time
when the initial shortest telomere reaches zero. As, on average, the
number of steps for a simple random walk starting from

M L= [min ]k k1≤ ≤32
0 to reach zero is M /(1/2) = 2 M, we expect the

following result:

 


⎡
⎣⎢

⎤
⎦⎥T Llim ( ) = 2 min .

σ L k
k

→ ( ) 1≤ ≤32
0

∞ (11)

We indeed find this asymptotic behavior by simulations (Fig. 3b),
highlighting two regimes that depend on the initial variance. If σ has a
small value, which is close to the deterministic initial state studied
above (Eq. (10)), the time of senescence is much smaller than expected
by just considering the shortest telomere because of the coupling effect.
If σ has a large value, the time of senescence is mainly determined by
the shortening of the initial shortest telomere.

We next ask which of these two regimes can be observed in
simulated times of senescence from the telomere distributions de-
scribed in Fig. 2, which are biologically more relevant than the previous
distribution models. To do so, we simulate 1000 individual lineages of
senescing cells and record their time of senescence, starting by
randomly drawing their 32 telomeres from the biologically relevant
distribution (large variance, in grey in Fig. 2c), from the simplified
distribution (intermediate variance, in black in Fig. 2c) or from a
constant distribution (no variance) (Fig. 4). We then compare these
simulated times of senescence with those predicted either from the
mean behavior of the shortest telomere (Eq. (11), dashed black lines in
Fig. 4) or the asymptotic expansion on the mean of the initial
distribution (Eq. (10), black lines in Fig. 4). The biologically relevant
distribution gives simulated times of senescence that are fully predicted
by computing the mean behavior of the average initial shortest
telomere (Fig. 4a, compare grey and dashed black lines which are
superimposed). In contrast, the constant distribution leads to a
senescence onset dictated by the asymptotic expansion (Fig. 4c,
compare grey and black lines), consistent with the results in Fig. 3a.
The simplified distribution produces an intermediate result where the
mean behavior of the shortest telomere and the asymptotic expansion
lead to similar predictions, which lay close to the simulated times of
senescence (Fig. 4b, compare grey, black and dashed black lines). These

Fig. 3. Distinct effects of the mean and variance of the initial distribution on theoretical expressions and numerical simulations of the time of senescence. (a) Starting from a constant
distribution  L x( )≔∞ 0, the asymptotic expansion in Eq. (10) is computed and compared to numerical simulations (1000 independent simulations). (b) Starting from a uniform

distribution of variance σ and mean  L( )∞ , the time of senescence is computed using Eq. (11), which takes only the mean behavior of the initial shortest telomere into account, and

compared to numerical simulations (1000 independent simulations).

Fig. 4. Comparison between simulated times of senescence (grey dots) and predictions from Eqs. (11) (dashed black lines) and (10) (black lines). (a) 32 telomere lengths are randomly
drawn from a biologically relevant distribution with a high variance (Fig. 2c, grey distribution) and the time of senescence is simulated to give one data point (grey dot). This process is
repeated 1000 times and compared to the two predictions. The grey line represents the average simulated time of senescence. (b) and (c): as in (a), but starting with an intermediate level
of variance for the initial telomere length distribution or no variance at all, respectively.
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results show that defining two senescence regimes depending on the
initial variance of telomere length distribution is critical for under-
standing the relevant dynamics of telomere shortening leading to
senescence.

4. Conclusion

In summary, in this article, we isolated all the sources of fluctua-
tions of the time of senescence that are dependent on telomere length.
To do so, we modeled several molecular mechanisms that contribute at
various levels to telomere length distribution and dynamics in S.
cerevisiae, where they are the most exhaustively and quantitatively
described. Among these mechanisms, we found that the asymmetry of
telomere replication and the coupling between the two telomeres
belonging to the same chromosome significantly contribute to senes-
cence heterogeneity and we formally established their links. We also
showed that the mode and robustness of telomerase recruitment
control the variance of the steady-state telomere length distribution,
which in turn defines two senescence regimes. With a low initial
variance, the time of senescence is non-linearly related to the initial
mean telomere length. In contrast, a high initial variance leads to a
major role of the initial shortest telomere in controlling senescence.
Because natural telomere length distributions can vary considerabely,
even within a species, we suggest that depending on the initial variance,
the two regimes we describe may operate at the same time during

senescence. As the core mechanisms modeled here are conserved in
most eukaryotes, we expect that our conclusions should also, in
principle, apply to telomere-dependent senescence in human cells,
although additional factors and mechanisms also contribute to senes-
cence heterogeneity (Griffith et al., 1999; Rodriguez-Brenes and
Peskin, 2010; Proctor and Kirkwood, 2002). This work uncovers a
new layer of complexity in the relationship between senescence onset
and telomere shortening explained by the asymmetry and coupling
mechanisms, and proposes methods for assessing the time of senes-
cence or conversely inferring parameters of the initial telomere length
distribution.
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Appendix

A1. Steady state of telomeres evolving with telomerase

First, we prove that both Markov chains defined by (2), (3) are ergodic and, second, we derive formula (4). The ergodicity is a direct consequence
of Foster-Lyapunov criteria (Corollary 8.7 p. 214 in Robert (2003) or Proposition 1.3 in Hairer (2016), for instance). The chains are time-
homogeneous and, for L a>0 :

  L L a a f L( − ) = (− ·B + C · ) = − /2 + ( ) ( ),1 0 0 0 0 0 0

and this last quantity is negative for large enough values of L0 because f tends to zero, either f is f l β l L( ) = (1 + ( − ))s
−1 or f l( ) = l i≤ s. This proof of

ergodicity works for any function f having a limit l at infinity which satisfies


l < a
2 ( )0

.

Moreover, the Markov chains L( )n defined by (2), (3) are irreducible and aperiodic. Therefore, in both cases, there exists a unique equilibrium
distribution, denoted L∞. For the model (3), it is characterized by the fact that L∞ and L a( − ·B ) + L i∞ 0

+
0 { ≤ }s∞ have the same probability generating

function.
To establish formula (4) we distinguish the three regimes: L a< ·B∞ 0, a L i·B ≤ ≤ s0 ∞ , L i> s∞ , and the cases B = 00 or B = 10 . For u such that

u ≤ 1, we obtain:
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From (A.1), we get:

  u u S u u u u S u S u( )(1 − ) = ( )( ( ) − 1)(1 + ) + ( )( (1) − ( )).L a
i
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− −
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As the probability generating function of a geometric distribution is explicitly given by  u p uq( ) = (1 − )−10 , with q p= 1 − , we obtain (4) after
multiplication by uq u(1 − ) a.

In order to compute the πk for all k, we identify the coefficients of the power series of each side of (4) distinguishing cases for the values of k. For
simplicity we set π = 0k for k < 0. Using the identities: u uq qu u qu( − 1)(1 − ) = − + + − 1,a a a+1 u u u u u( − 1)( + 1) = − + − 1,a a a+1 we get:
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(A.2)
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The following table gives the recurrence relations obtained after identification in the coefficients of (A.2).

k relation

a⟦0, − 1⟧ ϕ

a
∑π p

p
π a

k
π= 21 − − − 1

= 1a o k

a i⟦ + 1, ⟧s π p
p

π p
p

π= −21 − + 2 −
k k a k a− −1 −

i + 1s π qπ q π= −2 + (1 + )i i i+1s s a s a− +1−

i i a⟦ + 2, + ⟧s s π qπ q π qπ= −2 + (1 + ) +k k a k a k− −1 − −1

i a+ + 1s π qπ π qπ= −2 + +i a i i i a+ +1 +1 +s s s s

i a> + + 1s π qπ π qπ= − + +k k a k a k− −1 − −1

Note that for k such that k a0 ≤ ≤ − 1, the identification gives no information on the values of the πk. These formulas show that all the πk
depend linearly on the a first states, πk, k a= 0,…, − 1. Now, we indicate how to compute these a first values.

Hence, using (4), the generating function of L∞ is only a function of the a first states. Dividing (4) by u uq(1 − )(1 − ), we can find
 ψ: × [0, 1] →a linear in the first a coordinates such that:

u u ψ π π u(1+⋯+ ) ( ) = ( ,…, , ).a L
a

−1
0 −1∞ (A.3)

The a − 1 roots of R u u( ) = 1+⋯+ a−1 are the u e=k
iπk a2 / for k a1 ≤ ≤ − 1, which are in the unit disk. Therefore, the vector π π( ,…, )a0 −1 is solution

of the system:

ψ π π u k a( ,…, , ) = 0 for 1 ≤ ≤ − 1a k0 −1 (A.4)

where π0 is, as usual determined, by the normalization condition. If the a a× system (A.4) to which we added the normalization condition is
invertible, then there exists a unique solution π π( ,…, )a0 −1 . Having the vector π π( ,…, )a0 −1 , the generating function  L( )∞ follows from (A.3).

Finally, we want to explicitly determine the πk for k a≥ . The previous table gives homogeneous linear recurrence relations with constant
coefficients. For instance πk, for k in a i+ 1, s , is a linear combination (independent of k) of the k-th powers of the roots of the (conjugate of the)
characteristic polynomial cX c X− (1 + ) + 1a a+1 , where c q p= 2 / ∈ (0, ∞). This polynomial is of degree a + 1 and has 1 as a root. This last property is
also true for the characteristic polynomials of the relations for the πk for k in i i a+ 2, +s s or i a> + + 1s . As the quartic equation has explicit
solutions, the expressions of the πk, k a≥ are fully explicit if a + 1 ≤ 4 + 1, that is a ≤ 4. In particular for a=1, the π( )k k i∈ 1, s and π( )k k i> s are two
geometric progressions:

⎛
⎝⎜

⎞
⎠⎟k i π c π k i π p p

p
π∀ ∈ 1, , = , ∀ > , = (1 − ) 2 .s k

k
s k

k
i

0

+1

0

s

(A.5)

For a > 4 the roots of these polynomials can be found numerically.

B1. Choice of is

To rigorously compare the variance of the simplified model (3) with the one of (2), we choose is so that the ceiling function of the mean of the
equilibrium of (3)  L⌈ ( )⌉∞ is the same as the one for (2), i.e. 342 bp in Xu et al. (2013). We take the biological parameters obtained in Teixeira et al.
(2004); Soudet et al. (2014) and used in Xu et al. (2013):

a p L β= 7, = 0.026, = 90, = 0.045,s

where β is a fitting parameter describing telomerase recruitment to telomeres (Xu et al., 2013) (Table E.1). In order to compute the corresponding
mean of the equilibrium, for each choice of is we run 106 numerical simulations of (3). This mean is then computed and plotted as a function of is,
cf. Fig. B.1. Finally, we chose the value of is that gives  L⌈ ( )⌉ = 342 bp∞ . This procedure leads to is=308 bp.

C1. Expected time of senescence

The aim of this section is to establish formula (5). Before entering the details just note that taking a=1 is not strictly equivalent to make a change
in the length unit as the lenghts of the telomeres are integer-valued. But taking a > 1 only make the results more difficult to state without exhibiting
a new behavior. For the sake of simplicity, we drop the superscript i in this section and start by studying a typical couple X Y( , )n n . The shortening of
these two telomeres can be mathematically translated into the following model:
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Y

X a
Y a

= ( − ·B )
( − ·(1 − B ))

,n

n

n n

n n

+1

+1

+

+ (C.6)

where Bn is a Bernoulli random variable of parameter 1/2, and X Y Π( , ) ∼dist
0 0

.
.

This process is an oriented simple random walk on 2 until one of the coordinates reaches zero, and can be written explicitly:

∑ ∑X X a X aB n Y Y a Y a n B n= − B = − ( , 1/2), = − (1 − B ) = − ( − ( , 1/2)),n
k

n

k n
k

n

k0
=1

0 0
=1

0
(C.7)

where B n( , 1/2) is a binomial distribution of parameters n and 1/2. In this case, let us define the first time one of the coordinates reaches zero, T1, as:

T n X Y= inf{ ≥ 0, min( , ) < 0}n n
1

Then, from (C.7) and for a=1, because X( )n and Y( )n are non-increasing, we get:

  
⎛
⎝⎜

⎞
⎠⎟∑ ∑T n X Y n Y B n X Π X k Y l n

t
( > ) = ( ≥ 0, ≥ 0) = ( − ≤ ( , 1/2) ≤ ) = ( = , = )2 .n n

k l n
k l

n

t n l

k
1

0 0
+ ≥
, ≥0

0 0
−

= −
(C.8)

From here, we easily derive the distribution of the time of senescence by considering all 16 independent pairs of telomeres:

     
⎛
⎝⎜

⎞
⎠⎟T n n L i X Y X Y T n( > ) = ( ¬ {senescence at the generation}) = min ≥ 0 = ( ∀ ∈ ⟦1, 16⟧, min( , ) ≥ 0) = (min( , ) ≥ 0) = ( > ) .th

k
k
n

n
i

n
i

n n
1≤ ≤32

16 1 16

(C.9)

Formulas (C.8) and (C.9) lead to (5), which gives the expected time of senescence (6) using  T T n( ) = ∑ ( > )n=0
∞ .

D1. Asymptotics of the mean time of senescence

The aim of this section is to prove formulas (9) and (10). To do so we first note that, using a generalized version of the central limit theorem, for
any fixed positive number t, and any sequence u tn∼n :

⎛
⎝⎜

⎞
⎠⎟B u u

n
t

, 1
2

− 1
2

⎯ →⎯⎯⎯⎯⎯⎯ 1
2

(0, ),
n n

n→+∞ (D.10)

where B u( , )n
1
2 is a binomial distribution with parameters un and 1/2.

Let w be a real number. As in (C.8), we get, with n x x w x x( ) = ⌊2 − ⌋ ∼ 20 0 0 0:
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As x0 tends to ∞, thanks to (D.10), we obtain:
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where N ∼ (0, 2).

The speed of convergence is given by the Berry-Essen theorem in terms of the cumulative distribution function of
x T

x

2 − x0 0
1

0
, say Fx0:

 x x F x x Cx∀ ∈ , ∀ ∈ ( ) − erf ≤ ,x0 0
−1/2

0

Fig. B.1. The expected length  L( )∞ as function of is.
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where C is an absolute constant. This inequality should provide a bound to the difference in Eq. (10):
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E1. Parameters used in this study

See Table E1.
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Parameters used in this study.

a Length of the 3′-end overhang.
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