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Abstract 
 
To ensure genome integrity, cells activate the DNA damage checkpoint in response to genotoxic lesions to block 
cell cycle progression. This surveillance mechanism provides time to repair the damage before resuming cell 
cycle with an intact genome. When the damage is not repaired, cells can, in some conditions, override the cell 
cycle arrest and proceed with proliferation, a phenomenon known as adaptation to DNA damage. A 
subpopulation of adapted cells might eventually survive, but only at the cost of extensive genome instability. 
How and in which context adaptation operates the trade-off between survival and genome stability is a 
fascinating question. After a brief review of the current knowledge on adaptation to DNA damage in budding 
yeast, we will discuss a new role of adaptation in the context of telomerase-negative cells and replicative 
senescence, and the consequences for genome instability. 
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DNA damage checkpoint and adaptation 
 
DNA damage is a major challenge for eukaryotic cells, which must ensure genome integrity while proliferating. 
The assessment of the damage and the subsequent response are critical for survival and genome stability. Cells 
have developed a sophisticated safeguard mechanism, called the DNA damage checkpoint, which blocks cell-
cycle progression to provide time for repair (Weinert and Hartwell 1988; Hartwell and Weinert 1989). Among 
the variety of DNA lesions, double-strand breaks (DSBs) are particularly cytotoxic if left unrepaired and have 
served as a model to establish, in budding yeast, the general framework of the DNA damage response, which is 
conserved throughout eukaryotes. The first step of the DNA damage response is the detection of the break by the 
independent recruitment of the Ku complex (Yku70/Yu80) and the MRX complex (Mre11/Rad50/Xrs2). They in 
turn recruit protein kinases of the phosphoinositide 3-kinase-related kinase (PIKK) family, Tel1 and Mec1, 
which trigger the DNA damage checkpoint through a cascade of phosphorylation. The culminating step of the 
cascade is the activation of effector kinases, Rad53 and Chk1, which target multiple cellular processes to 
ultimately arrest the cell cycle (reviewed in (Finn et al. 2012)). 
 
Two main pathways can repair the damage: non-homologous end joining (NHEJ) and homologous 
recombination (HR). The decision between these two mechanisms depends on the phase of the cell cycle, 
through Cdk1 cyclin-dependent kinase activity. NHEJ is favoured in G1 phase and ligates the two broken ends, 
while HR, which reseals the break using a homologous sequence, is initiated by 5´-3´ resection and exposure of 
single-stranded DNA (ssDNA) promoted in S/G2 phases.  
 
When repair is successful, the entire DNA damage checkpoint signalling pathway is shut down since the lesion 
is no longer detected, allowing the cell cycle to resume in a process called recovery. In contrast, when the 
damage is unrepairable, yeast cells experience a much longer checkpoint arrest (~5-15 hrs) but can eventually re-
enter the cell cycle despite the detectable presence of damage (Sandell and Zakian 1993; Toczyski et al. 1997; 
Lee et al. 1998). This process is known as adaptation to DNA damage. During adaptation, the checkpoint is 
partially relieved, thus allowing cell cycle progression. More precisely, Rad53 is inactivated, which alleviates the 
downstream inhibition of cell cycle progression (Pellicioli et al. 2001). The upstream part of the checkpoint 
remains largely unaffected, including the sensors Ddc1 (subunit of the 9-1-1 clamp complex) and Ddc2 (in 
complex with Mec1), and the adaptor Rad9, although a very slight drop in Ddc2 foci intensity in a subset of cells 
and in Rad9 hyperphosphorylation has been reported (Melo et al. 2001; Donnianni et al. 2010; Vidanes et al. 
2010). 
 
While many mutants defective for adaptation have been described and have contributed to its characterization, 
the molecular mechanisms underlying the process are not yet completely elucidated (Harrison and Haber 2006). 
The conserved family of Polo-like kinases has been implicated in adaptation and recovery to DNA damage 
checkpoint (Serrano and D'Amours 2014). In budding yeast, Cdc5 is the only Polo kinase and is essential for 
several cell-cycle-related processes (Botchkarev and Haber 2017). The involvement of Cdc5 in adaptation was 
first demonstrated with the isolation of the L251W point mutant allele, called cdc5-ad, which is defective for 
adaptation (Toczyski et al. 1997). Cells carrying the cdc5-ad allele and challenged by an unrepairable DNA 
damage stay arrested in G2/M and maintain Rad53 in an activated state (Pellicioli et al. 2001). Other recently 
identified adaptation mutants of CDC5 (cdc5-16 and cdc5-T238A) have also contributed to the dissection of 
Cdc5’s role in adaptation (Ratsima et al. 2011; Ratsima et al. 2016; Rawal et al. 2016). However, despite its 
central role in adaptation, the exact mechanisms by which Cdc5 exerts its function and which Cdc5 targets are 
affected in response to DNA damage are still unclear (Hu et al. 2001; Zhang et al. 2009; Donnianni et al. 2010; 
Dotiwala et al. 2010; Schleker et al. 2010; Vidanes et al. 2010; Valerio-Santiago et al. 2013; Ratsima et al. 2016; 
Rawal et al. 2016; Botchkarev et al. 2017).  
 
Not all unrepairable DNA damages seem to be amenable to adaptation. For instance, while a single unrepaired 
DSB allows adaptation, two simultaneously induced DSBs do not (Lee et al. 1998). One important factor 
appears to be the amount of single-stranded DNA that accumulates during the arrest, as supported by the fact 
that the adaptation defect of yku70∆ mutant, which exhibits increased resection, is suppressed by limiting 
resection through deletion of MRE11 (Lee et al. 1998). Consistently, cdc13-1 mutant cells placed at restrictive 
temperature, in which telomeres are uncapped, resected and thus detected as DNA damage, is a widely used 
setting to study adaptation but the fraction of cells that are able to eventually adapt decreases with increasing 
temperatures (Toczyski 2006). However, the global amount of ssDNA induced at restrictive temperature in 
cdc13-1 cells might exceed that found in cells with two DSBs (Garvik et al. 1995; Westmoreland et al. 2018), 
suggesting that the nature of the damage, and not only the amount of exposed ssDNA, might be important for 
adaptation. Other types of damage, induced by specific treatments, have also been used in vertebrate systems and 
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suggest that adaptation operates only within a range of DNA damage load (Yoo et al. 2004; Syljuasen et al. 
2006; Rezacova et al. 2011; Kubara et al. 2012).  
 
We recently investigated whether telomerase-negative cells might also undergo adaptation when they activate 
the DNA damage checkpoint in response to critically short telomeres in a process known as replicative 
senescence. This new experimental setting we tested is physiologically relevant for human somatic tissues where 
telomerase is repressed and where cells eventually enter senescence due to telomere exhaustion. 
 
Adaptation in telomere-induced replicative senescence 
 
Telomeres are repeated sequences found at chromosome extremities. By nature, they resemble one side of a DSB 
but specific proteins are bound to telomeres and collectively form a capping structure that prevents DNA damage 
checkpoint activation and unwanted repair by NHEJ or HR (Jain and Cooper 2010; Wellinger and Zakian 2012). 
The length of a telomere is dynamic and varies with each cell cycle. On the one hand, telomeres shorten due to 
the DNA-end-replication problem. Conversely, as they become shorter, telomeres can be extended by 
telomerase, a dedicated reverse transcriptase able to add de novo telomeric repeats. In the absence of telomerase, 
telomeres get continuously shorter as cells divide until the shortest one reaches a critical threshold, activating the 
DNA damage checkpoint and arresting the cells in replicative senescence (Teixeira 2013). 
 
Replicative senescence is a heterogeneous process at several scales. Independent telomerase-negative cultures 
display variable senescence onset timings. Even within a telomerase-negative cell culture, subcloned single cells 
give rise to colonies of heterogeneous sizes, reflecting complex cell proliferation dynamics (Lundblad and 
Szostak 1989; Enomoto et al. 2002). Thus, a telomerase-negative culture is always a mixture of cells at different 
stages of senescence. The lack of synchrony in reaching senescence precludes the use of standard assays to study 
the role of adaptation (Toczyski 2006). 
 
To circumvent this issue, we took advantage of a single-cell microfluidics-based method coupled to live 
microscopy, which previously allowed us to characterize the dynamics of cell divisions in individual cell 
lineages in which telomerase activity was experimentally repressed (Xu et al. 2015). In particular, we evidenced 
in individual lineages the presence of frequent cell-cycle arrests that were followed by more cell divisions and 
were consequently not terminal senescence arrests. We termed them non-terminal arrests and showed that they 
were, at least partially, Mec1- and Pol32-dependent. Combined with evidence that recombination factors such as 
Rad51 and Rad52 are important for cell growth even early after telomerase inactivation (Lundblad and 
Blackburn 1993; Le et al. 1999; Khadaroo et al. 2009; Churikov et al. 2014; Fallet et al. 2014; Xu et al. 2015; 
Claussin and Chang 2016), this result suggests that telomerase-negative cells frequently experience telomere-
related damage, activate the DNA damage checkpoint and undergo repair events such as break-induced 
replication (BIR). 
 
In a recent report, we demonstrated that, in addition to repair, adaptation is also a relatively frequent response to 
checkpoint arrests in telomerase-negative cells, occurring in 2-7% of all cell cycles (Coutelier et al. 2018). Two 
independent approaches were used: a genetic approach using the adaptation-deficient mutants cdc5-ad and tid1∆ 
and a functional approach using a fluorescent reporter to assess cell division with maintenance of the upstream 
part of the checkpoint pathway, typical of adaptation. Importantly, we did not use strains impaired for repair 
pathways, as in some adaptation assays (Toczyski 2006). That telomerase-negative cells undergo adaptation 
even in the presence of functional repair mechanisms begs the question of the cell fate decision between the two 
pathways. It is possible that the choice simply depends on the type of detected telomeric damage and on how 
repairable it is. Regarding the nature of the damage, while we do not exclude progressively shortening telomeres 
reaching a critical threshold as a potential signal, the early timing of the non-terminal compared to terminal 
arrests makes them hard to reconcile with a model of progressive telomere shortening. We rather speculate that 
telomere breaks due to replication fork stalling and collapse might trigger these arrests. Whether the molecular 
nature of the telomere breaks somehow inhibits repair factors and thus channels the cell toward adaptation 
remains to be investigated further. 
 
Cell survival and genome instability: adaptation as a double-edged sword 
 
The body of evidence supporting a functional role of adaptation in yeast has grown over the past years. It was 
initially shown that adaptation is important for survival of irradiated diploid cells when HR is compromised, 
while at the same time promoting genomic instability in the surviving progeny (Galgoczy and Toczyski 2001). 
This is supported by a recent study showing that adaptation to genotoxic challenge of HR-deficient diploid cells 
leads to aneuploid progeny that develops some form of resistance to a second genotoxic challenge (Bender et al. 
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2018). To follow on a similar idea, in another setting, adaptation is required to survive telomere uncapping by 
loss of Cdc13 in established telomerase-independent survivors (Mersaoui et al. 2015). The Cdc13-independent 
cells grow in the presence of permanent damage that is tolerated because of mutations in checkpoint genes. In 
contrast to surviving telomere uncapping, adaptation is dispensable for the emergence of post senescence 
telomerase-independent survivors (Coutelier et al. 2018). 
 
While adaptation can be thought of as a last-ditch effort to survive, it is also a strong commitment as the cost of 
bearing extensive genome instability is great. For instance, the longer cells stay with uncapped telomeres 
(cdc13-1 at restrictive temperature), the less viable they are once they return to permissive temperature with 
functional telomeres, and this loss of viability is partially rescued in an adaptation mutant (Toczyski et al. 1997; 
Klermund et al. 2014). Maintenance of the checkpoint arrest is thus beneficial for cell survival only if the initial 
damage is eventually removed or repaired. It is interesting to suggest that adaptation, with its typically long 
timescale, may be part of a bet edging mechanism to maximize survival in the face of DNA damage with 
unpredictable persistence. This possibility may be tested experimentally and mathematically modelled. 
 
Our recent study extends the functional role of adaptation to telomerase-negative cells and replicative senescence 
(Coutelier et al. 2018). After adapting to a prolonged cell-cycle arrest, telomerase-negative cells still had 
substantial proliferation potential, which added to the relatively high frequency of adaptation events makes post-
adapted cells a non-negligible fraction of a heterogeneous population of senescing cells. Adaptation is thus a true 
survival mechanism for telomerase-negative cells experiencing telomere damage. Consistent with the notion that 
cell proliferation with unrepaired DNA damage is detrimental for genome stability, adaptation contributes to 
roughly half of the mutation rate observed in senescent cells (Coutelier et al. 2018). Cells undergoing non-
terminal arrests followed by adaptation, which occur with increasing frequency as cells divide, would mutate and 
progressively accumulate in the senescing population. This model partially explains the finding that the mutation 
rate of telomerase-negative cells increases over time as they lose proliferation potential (Hackett et al. 2001; 
Hackett and Greider 2003; Coutelier et al. 2018). Because precancerous cells can likewise accumulate high level 
of genome instability due to dysfunctional telomeres (Maciejowski and de Lange 2017), we suggest that similar 
adaptation events could occur in aging human cells, contributing to the early stages of tumorigenesis when 
checkpoints are still functional and leading to genome instability. Consistent with this idea, Plk1 overexpression 
has been found in numerous human tumours and seems to be involved in neoplastic transformation as well as in 
resistance to several chemotherapy drugs (Strebhardt and Ullrich 2006; Gutteridge et al. 2016). Plk1-induced 
genome instability might also be detrimental though if too important, even to cancer cells, as recently reported 
(de Carcer et al. 2018). 
 
As for other types of damage, adaptation in telomerase-negative cells leads to a wide range of mutations and 
genome rearrangements (Coutelier et al. 2018). By promoting cell division, adaptation might cause global 
genome rearrangement starting at the telomeres and initiating a cascade of instabilities through a myriad of 
possible mechanisms (Galgoczy and Toczyski 2001; Hackett and Greider 2003; Kaye et al. 2004; Vasan et al. 
2014; Lopez et al. 2015; Beyer and Weinert 2016). Adapted cells could also explore repair pathways that were 
not available or utilized during the initial G2/M arrest, such as NHEJ in G1 and BIR or microhomology-
mediated end joining (MMEJ) in S/G2 (Galgoczy and Toczyski 2001; Wang et al. 2018). A direct link between 
the adaptation mechanism and repair pathway choice could be Cdc5/Plk1, since many repair factors are possible 
substrates for Cdc5 kinase activity, including Sae2 and Mms4 (Donnianni et al. 2010; Matos et al. 2011; Gallo-
Fernandez et al. 2012; Schwartz et al. 2012; Szakal and Branzei 2013). Similarly, in human cells, CtIP (ortholog 
of Sae2), Mre11, Rad51 and BRCA1 are Plk1 targets (Yata et al. 2012; Chabalier-Taste et al. 2016; Li et al. 
2017; Wang et al. 2018). Cdc5/Plk1 might therefore preferentially activate some repair pathways while 
concurrently enabling adaptation. 
 
Overall, adaptation is a double-edged sword for cells experiencing unrepairable DNA damage. The trade-off is 
that adapted cells may eventually generate a viable progeny but only at the cost of widespread genome 
instability. The balance between survival and genome instability might depend on the type of damage. Notably, 
telomere damage in telomerase-negative cells seems amenable to adaptation with substantial survival rate in the 
progeny, despite extensive genome instability. For unicellular organisms, increased genomic and phenotypic 
diversity can drive evolution and “adaptation” in a broader sense. However, adapting to DNA damage that could 
potentially be repaired can be detrimental. The cell fate decision between repair and adaptation is thus critical 
and although it is achieved, as a first approximation, through timescale separation, more investigation is needed 
to understand the intricate relationship between adaptation, repair and genome instability. 
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