Trapping membrane proteins with amphipols.
Structure and properties of membrane protein/amphipol complexes

Manuela Zoonens
CIMR, University of Cambridge, UK
CNRS, Institut de Biologie Physico-Chimique, France

Contact: mzoonens@gmail.com
1) How to trap a membrane protein (MP) in amphipols (APols)?

- Direct extraction of MPs from the biological membrane has been observed in a very few cases
1) How to trap a membrane protein (MP) in amphipols (APols)?

- Direct extraction of MPs from the biological membrane has been observed in a very few cases.
- Usually, MPs are extracted and purified in detergent and then they are transferred in APol.
1) How to trap a membrane protein (MP) in amphipols (APols)?

- Direct extraction of MPs from the biological membrane has been observed in a very few cases.
- Usually, MPs are extracted and purified in detergent and then they are transferred in APol.

![Diagram showing steps for trapping membrane proteins in amphipols](image-url)
1) How to define conditions for trapping a MP in APols?

- Estimation of the best [protein:APol] w/w ratio

![Diagram of trapping after dilution under the cmc]

- High speed centrifugation

![Graph showing absorbance at 280nm before and after centrifugation]

- Measure the absorbance at 280nm

- Analyze the resulting complexes by size exclusion chromatography (SEC)
2) What do MP/APol complexes look like after trapping?

1. MP/APol complexes are slightly larger than MP/detergent complexes (SEC, SANS, AUC, NMR)

Charvolin *et al.*, *in preparation*
2) What do MP/APol complexes look like after trapping?

1. MP/APol complexes are slightly larger than MP/detergent complexes
2. The monodispersity of the complexes depends on several factors

Hypothesis:
Because the solubility of A8-35 is conferred by its charges, lowering pH or the presence of divalent cations reduces the electrostatic repulsions between particles. Divalent cations could also link up particles together and lead to aggregation.
2) What do MP/APol complexes look like after trapping?

1. MP/APol complexes are slightly larger than MP/detergent complexes
2. The monodispersity of the complexes depends on several factors

Separating the complexes from extra free APol

Hypothesis:
Because A8-35 is poorly dissociating, it has to be present in excess to efficiently compete with protein/protein interactions

Zoonens et al., Biochemistry, 2007
2) What do MP/APol complexes look like after trapping?

1. MP/APol complexes are slightly larger than MP/detergent complexes
2. The monodispersity of the complexes depends on several factors
3. Amphipols form a **compact layer** (1.5-2 nm) around the **transmembrane surface** of the protein (no diffuse corona; SANS, NMR, AUC)

NMR (tOmpA, 19 kDa)

SANS (BR, 27 kDa)

Zoonens *et al.*, *PNAS*, 2005

Catoire *et al.*, *Eur Biophys J*, 2010
2) What do MP/APol complexes look like after trapping?

1. MP/APol complexes are slightly larger than MP/detergent complexes
2. The monodispersity of the complexes depends on several factors
3. Amphipols form a compact layer around the transmembrane surface of the protein
4. Binding is non-covalent, but irreversible in the absence of a competing surfactant

FRET measurements after 1000-fold dilution in surfactant free buffer

Surface Plasmon Reasonance measurements upon extensive washing

Zoonens et al., Biochemistry, 2007

Hong & Lakey; in Popot et al., CMLS, 2003
2) What do MP/APol complexes look like after trapping?

1. MP/APol complexes are slightly larger than MP/detergent complexes
2. The monodispersity of the complexes depends on several factors
3. Amphipols form a compact layer around the transmembrane surface of the protein
4. Binding is non-covalent, but irreversible in the absence of a competing surfactant
5. Bound amphipols can be displaced by free amphipols, detergents, or lipids (Tribet et al., Langmuir, 1997; Nagy et al., FEBS Lett., 2001; Pocanschi et al., Biochemistry, 2006; Zoonens et al., Biochemistry, 2007; Tribet et al., Langmuir, 2009)

Exchange for free amphipol

![Graph showing exchange for free amphipol](image1)

Displacement by detergent

![Graph showing displacement by detergent](image2)

Zoonens et al., Biochemistry, 2007
3) How do MP/APol complexes behave in term of activity?

1. Amphipols may affect the dynamics—and, thereby, the activity—of the proteins they bind to

- Nicotinic acetylcholine receptor: no transmembrane movement; allosteric transitions unaffected

Martinez et al., FEBS Lett., 2002
3) How do MP/APol complexes behave in term of activity?

1. Amphipols may affect the dynamics—and, thereby, the activity—of the proteins they bind to

- Nicotinic acetylcholine receptor: no transmembrane movement; allosteric transitions unaffected
- Bacteriorhodopsin: very small transmembrane movements; no or very limited effects on the photocycle

Photocycle of BR

Spectral changes

Neutze et al., BBA, 2002
3) How do MP/APol complexes behave in term of activity?

1. Amphipols may affect the dynamics—and, thereby, the activity—of the proteins they bind to
 - Nicotinic acetylcholine receptor: no transmembrane movement; allosteric transitions unaffected
 - Bacteriorhodopsin: very small transmembrane movements; no or very limited effects on the photocycle

![UV-visible spectra of BR](image)

Gohon et al., Biophys. J., 2008

<table>
<thead>
<tr>
<th></th>
<th>DAS1 (ns)</th>
<th>DAS2 (μs)</th>
<th>DAS3 (μs)</th>
<th>DAS4 (ms)</th>
<th>DAS5 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>650</td>
<td>21</td>
<td>84</td>
<td>1.4</td>
<td>4.7</td>
</tr>
<tr>
<td>BR/OTG</td>
<td>375</td>
<td>4.3</td>
<td>23</td>
<td>0.53</td>
<td>9</td>
</tr>
<tr>
<td>BR/A8-35</td>
<td>480</td>
<td>5.8</td>
<td>53</td>
<td>1.0</td>
<td>6.3</td>
</tr>
</tbody>
</table>
3) How do MP/APoI complexes behave in term of activity?

1. Amphipols may affect the dynamics—and, thereby, the activity—of the proteins they bind to

 - Nicotinic acetylcholine receptor: no transmembrane movement; allosteric transitions unaffected
 - Bacteriorhodopsin: very small transmembrane movements; no or very limited effects on the photocycle
 - Sarcoplasmic calcium ATPase: large-scale transmembrane rearrangements; ATP hydrolysis and Ca\(^{2+}\) release reversibly inhibited
 Champeil et al., JBC 2000; Picard et al., Biochemistry 2006

3) How do MP/APol complexes behave in term of activity?

1. Amphipols may affect the dynamics—and, thereby, the activity—of the proteins they bind to
 - Nicotinic acetylcholine receptor: no transmembrane movement; allosteric transitions unaffected
 - Bacteriorhodopsin: very small transmembrane movements; no or very limited effects on the photocycle
 - Sarcoplasmic calcium ATPase: large-scale transmembrane rearrangements; ATP hydrolysis and Ca\(^{2+}\) release reversibly inhibited
 Champeil et al., JBC 2000; Picard et al., Biochemistry 2006

\[\Rightarrow \text{damping of large-scale transmembrane movements ('Gulliver effect')}\]
3) How do MP/APol complexes behave in term of activity?

1. Amphipols may affect the dynamics—and, thereby, the activity—of the proteins they bind to
2. Damping of dynamics may contribute to membrane protein stabilization by amphipols

Bacteriorhodopsin

Calcium ATPase

Champeil *et al.*, *JBC* 2000

Leukotriene receptor BLT1 (GPCR)

Dahmane *et al.*, *Biochemistry*, 2009
3) How do MP/APol complexes behave in term of activity?

1. Amphipols may affect the dynamics—and, thereby, the activity—of the proteins they bind to
2. Damping of dynamics may contribute to membrane protein stabilization by amphipols

⇒ Could the 'Gulliver effect' contribute to stabilizing APol-trapped MPs against inactivation?

For discussion, see Popot et al., CMLS, 2003; Picard et al., Biochemistry, 2006.
In conclusion

• Protocol of trapping:
 Usually, we transfer MPs from detergent solution to APols

• Solution properties:
 MP/APol complexes are essentially homogeneous but the monodispersity depends on the pH (higher than 7), the absence of divalent cations, and the presence of extra free APols

• Structural organization:
 APols interact exclusively with the hydrophobic transmembrane surface of MPs and form a compact layer of 1.5 to 2nm thickness

• Dynamics of association:
 APols do not desorb from MPs but they exchange for other surfactants (detergent, APols, or lipids)

• Activity:
 It seems to depend on the amplitude of the transmembrane conformational changes occurring during the catalytic cycle of the protein of interest

• Stability:
 MPs trapped in APols are generally more stable than in detergent solution

• Ligand binding:
 Generally unaffected by Apol trapping