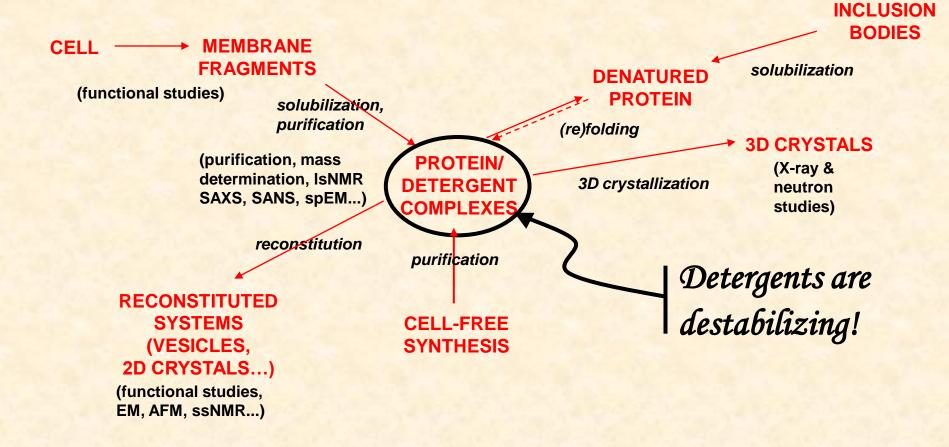
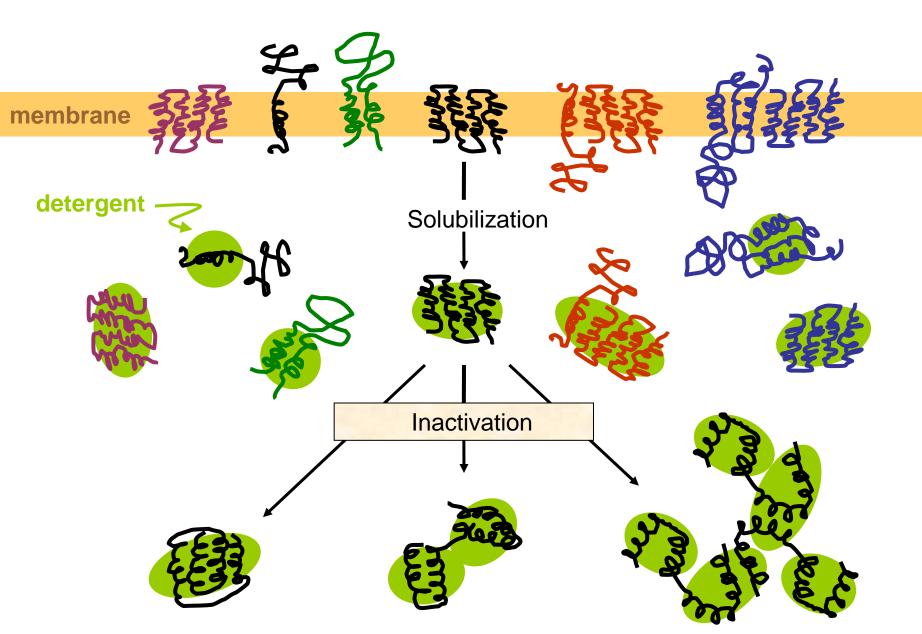
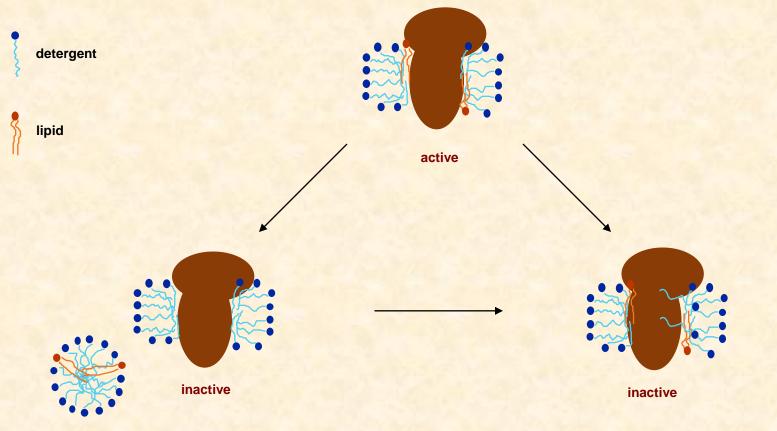

Membrane protein stability in aqueous solutions; destabilization by detergents

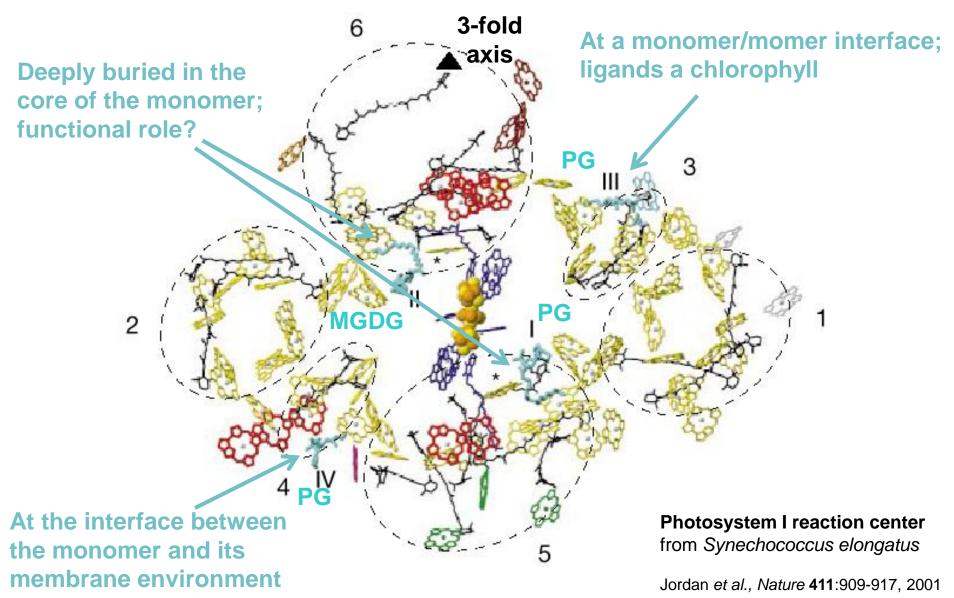

Jean-Luc Popot

CNRS/Université Paris-7 Institut de Biologie Physico-Chimique Paris, France.

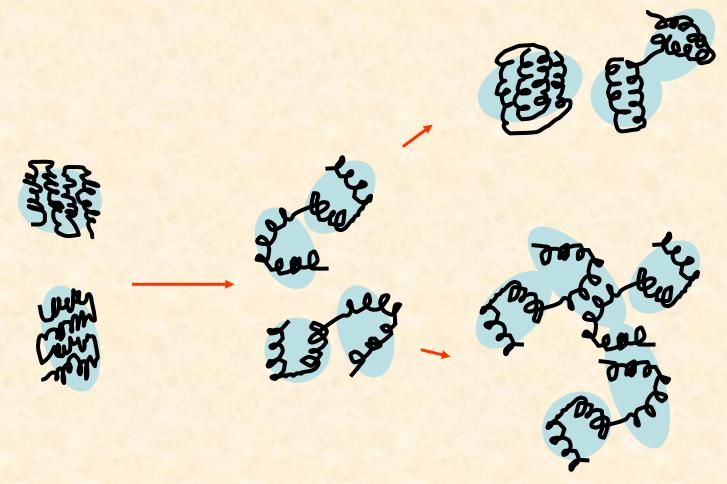

jean-luc.popot@ibpc.fr



From solubilization to inactivation


Molecular mechanisms of membrane protein inactivation by detergents

Two non-exclusive hypotheses

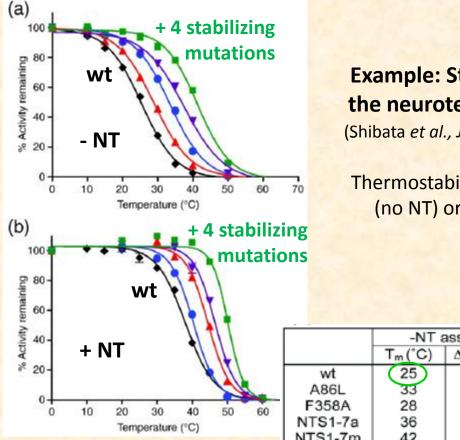

1. Loss of stabilizing cofactors (lipids, subunits, prosthetic groups...) 2. Direct perturbation of the transmembrane region of the protein

Lipids are not just a fluid continuum: some of them occupy well-defined positions and can be considered as authentic cofactors

Partial opening of the structure may initiate misfolding and/or aggregation events leading to inactivation

(cf. calcium ATPase)

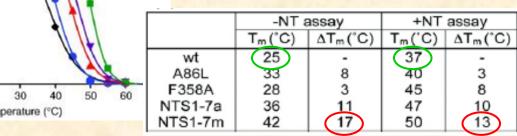
Classical approaches


- Transfer to "weak" detergents (Tween, digitonin...)
- Work close to the cmc (*i.e.*, limit the volume of micellar phase)
- Supplement micelles with lipids, cofactors, ligands...
- Lower the temperature
- Add glycerol
- Work fast!

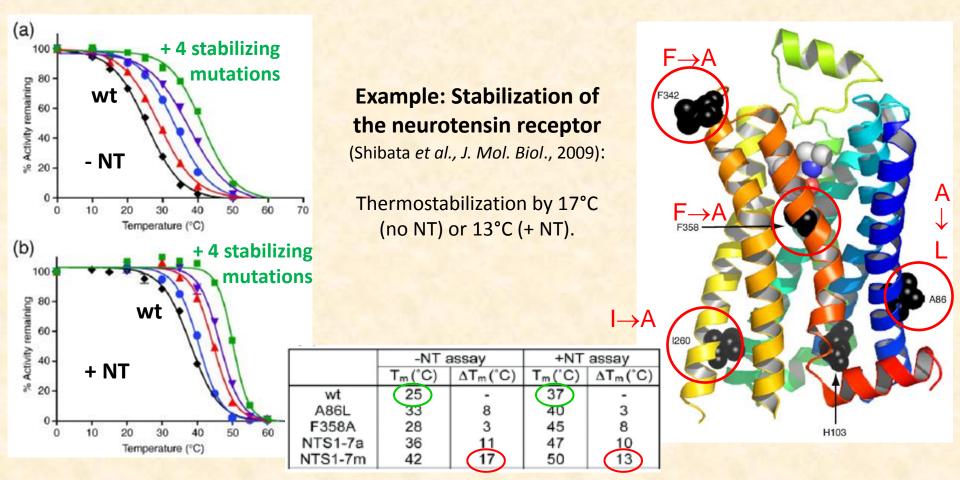
For references, see e.g.:

- Garavito & Ferguson-Miller, J. Biol. Chem. 276:32403-32406, 2001.
- Bowie, Curr. Opin. Struct. Biol. 11:397-402, 2001.
- Gohon & Popot, Curr. Opin. Colloid Interface Sci. 8:15-22, 2003.

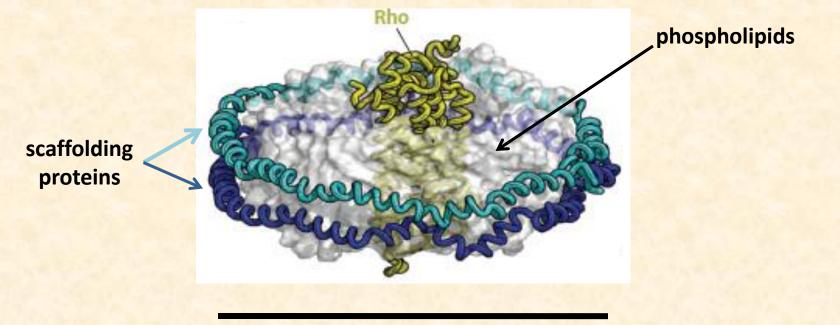
Novel approaches


• Select or engineer more stable proteins (ex. DAGK, GPCRs) (J.U. Bowie, C.G. Tate)

Example: Stabilization of the neurotensin receptor

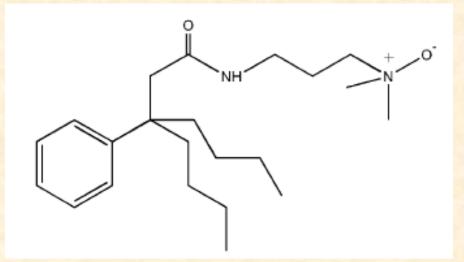

(Shibata et al., J. Mol. Biol., 2009):

Thermostabilization by 17°C (no NT) or 13°C (+ NT).


Novel approaches

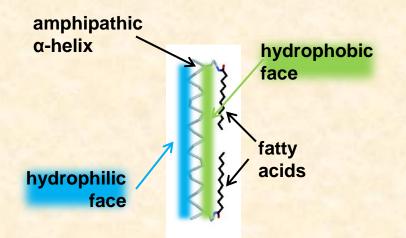
• Select or engineer more stable proteins (ex. DAGK, GPCRs) (J.U. Bowie, C.G. Tate)

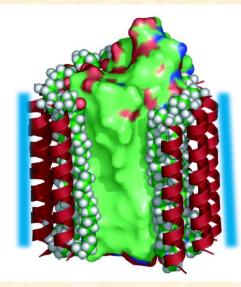
Novel approaches


- Select or engineer more stable proteins (ex. DAGK, GPCRs) (J.U. Bowie, C.G. Tate)
- Use non-micellar, lipid-like environments (bicelles, nanodiscs...) (C.R. Sanders, S.G. Sligar)

~10 nm

Novel approaches

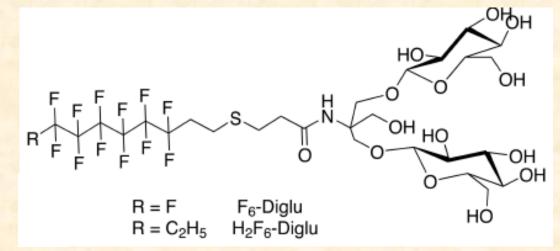

- Select or engineer more stable proteins (ex. DAGK, GPCRs) (J.U. Bowie, C.G. Tate)
- Use non-micellar, lipid-like environments (bicelles, nanodiscs...) (C.R. Sanders, S.G. Sligar)
- Transfer to novel, less aggressive surfactants such as:
 - "Tripod" detergents (S.H. Gellman)



From Yu et al., Protein Sci., 2000

Novel approaches

- Select or engineer more stable proteins (ex. DAGK, GPCRs) (J.U. Bowie, C.G. Tate)
- Use non-micellar, lipid-like environments (bicelles, nanodiscs...) (C.R. Sanders, S.G. Sligar)
- Transfer to novel, less aggressive surfactants such as:
 - "Tripod" detergents (S.H. Gellman)
 - "Peptitergents", "lipopeptides" (R.M. Stroud, G.Privé)



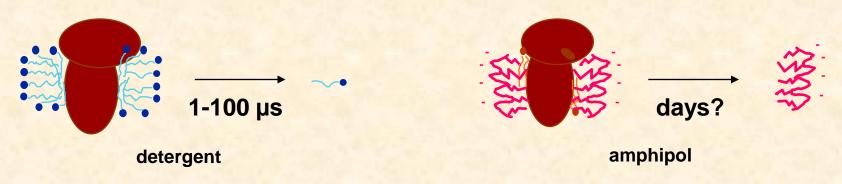
McGregor et al., Nat. Biotechnol., 2003

Novel approaches

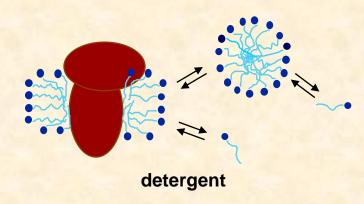
- Select or engineer more stable proteins (ex. DAGK, GPCRs) (J.U. Bowie, C.G. Tate)
- Use non-micellar, lipid-like environments (bicelles, nanodiscs...) (C.R. Sanders, S.G. Sligar)
- Transfer to novel, less aggressive surfactants such as:
 - "Tripod" detergents (S.H. Gellman)
 - "Peptitergents", "lipopeptides" (R.M. Stroud, G.Privé)
 - Fluorinated surfactants (B. Pucci & J.-L. Popot)

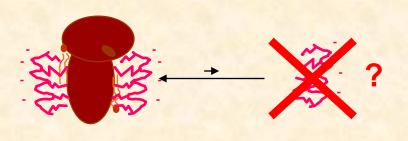
Breyton et al., Biophys. J., 2009

Novel approaches

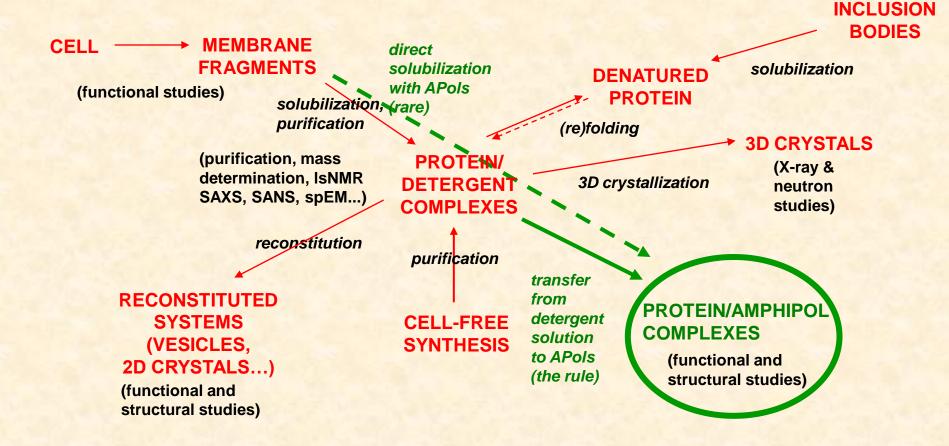

- Select or engineer more stable proteins (ex. DAGK, GPCRs) (J.U. Bowie, C.G. Tate)
- Use non-micellar, lipid-like environments (bicelles, nanodiscs...) (C.R. Sanders, S.G. Sligar)
- Transfer to novel, less aggressive surfactants such as:
 - "Tripod" detergents (S.H. Gellman)
 - "Peptitergents", "lipopeptides" (R.M. Stroud, G.Privé)
 - Fluorinated surfactants (B. Pucci & J.-L. Popot)
 - "Amphipols" (C. Tribet, R. Audebert & J.-L. Popot)

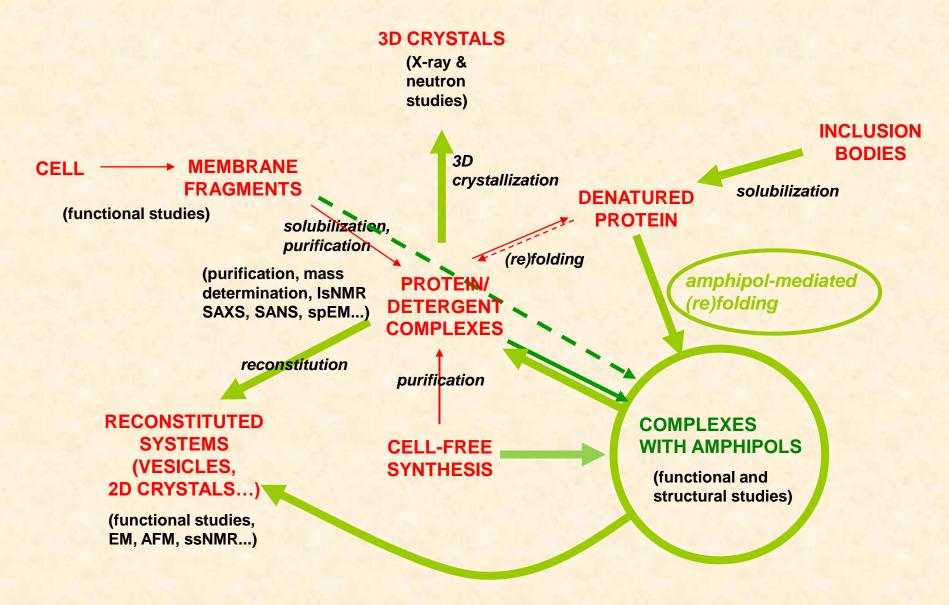
Rationales for the design of amphipols


Principle


Non-covalent multipoint attachment of an amphipathic polymer onto the transmembrane surface of a membrane protein ought to result in a soluble complex featuring:

• low $k_{off} \rightarrow$ quasi-irreversible attachment




• small $K_D \rightarrow$ very low equilibrium concentration of free surfactant

amphipol

Opportunities and constraints associated with the use of amphipols, nanodiscs, and fluorinated surfactants

Technology	Amphipols	Nanodiscs	Fluorinated surfactants
Membrane protein (MP) stabilization	+	+	+
Functional studies	+	++	+
Mediating MP immobilization for ligand binding measurements	+	+	-
Optical spectroscopy (visible absorption spectrum)	+	+	+
Optical spectroscopy (UV, intrinsic MP fluorescence, circular dichroism)	+	H	+
Fluorescence spectroscopy using probes	+	+	+
Infrared spectroscopy	-	±	-
MP solution studies by AUC, SEC, SAXS, SANS	+	±	+
Solution NMR	+	±?	?
Solid-state NMR	+?	+	-
Three-dimensional crystallization	±	-?	+?
Two-dimensional crystallization	-	-?	+?
Trapping MP supercomplexes	+	±	+
EM, AFM (single particles)	+	+	+
Transferring MPs to preformed membranes	+	?	+
Folding full-length MPs to native state	+	?	+
MP cell-free translation	+	+	+
Isoelectrofocusing and two-dimensional gels	+	+?	?
MP mass spectrometry	+	?	?

From Popot, Annu. Rev. Biochem., in the press

Structure and properties of amphipols; functionalized amphipols

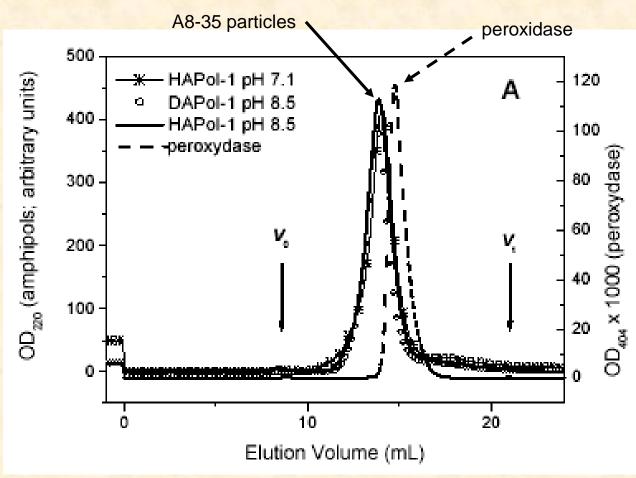
Jean-Luc Popot

CNRS/Université Paris-7 Institut de Biologie Physico-Chimique Paris, France.

jean-luc.popot@ibpc.fr

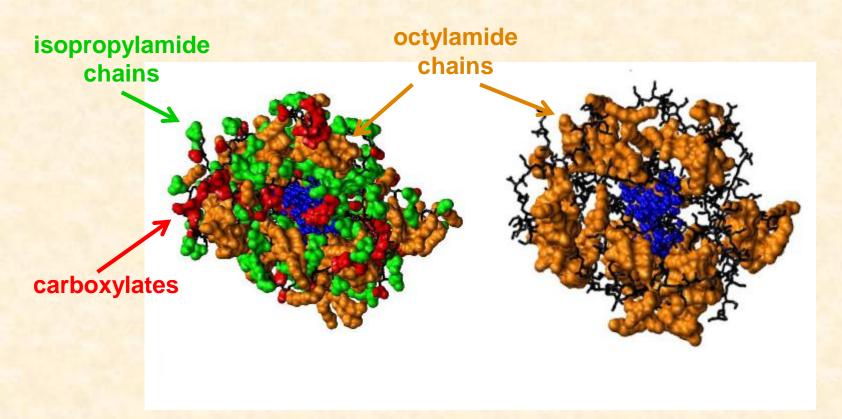
Polyacrylate-based amphipols

Synthesis: graft at random long- and short-chain amines onto polydisperse polyacrylic acid $-(CH_2-CH)_x-(CH_2-CH)_y-(CH_2-CH)_z$ v CO2 Confer solubility Control charge Confer amphipathy _ density Monomers of each type (%) X Ζ A8-35 35 25 40

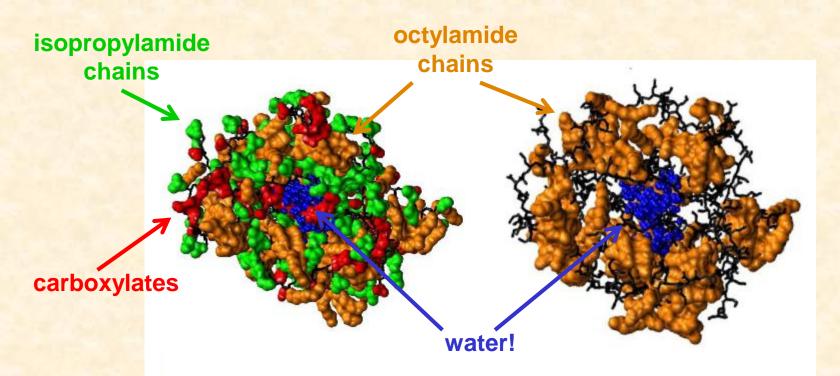

Amphipol A8-35 : <MW> ≈ 9-10 kDa, 35% of underivatized carboxylic groups; on average ~70 monomers, ~18 of which bear an octyl chain.

Tribet et al., PNAS, 1996; Gohon et al., Langmuir, 2006.

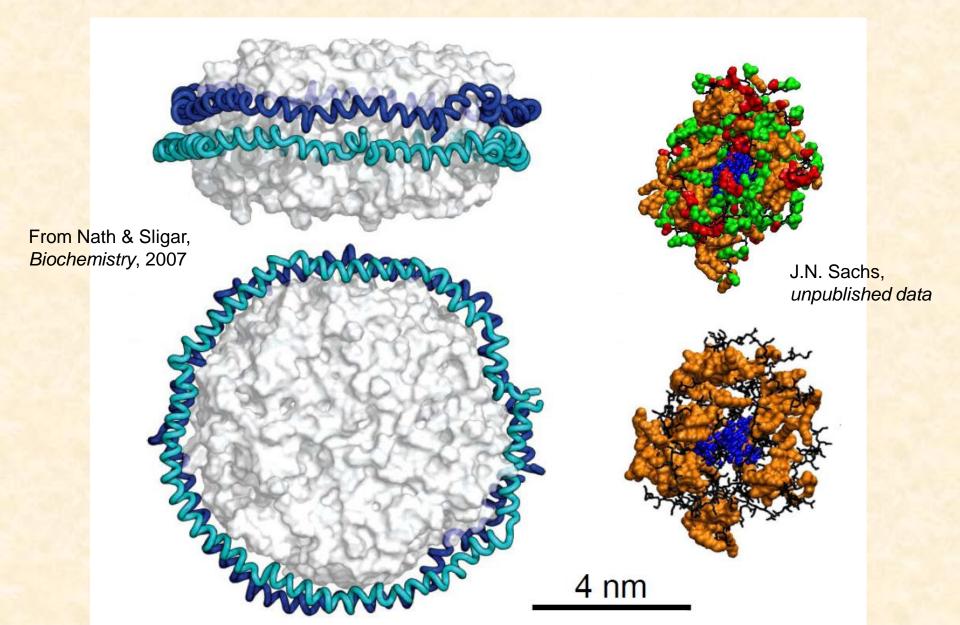
Solution properties of A8-35


(as analyzed by SANS, SEC, AUC, DLS...)

- Fully ionized at $pH \ge 7$
- Highly soluble in water (>200 g/l)
- Self-associates into small, compact, hydrated particles
- comprising ~4 molecules ($M \approx 40$ kDa, $R_{\rm s} \approx 3.15$ nm)

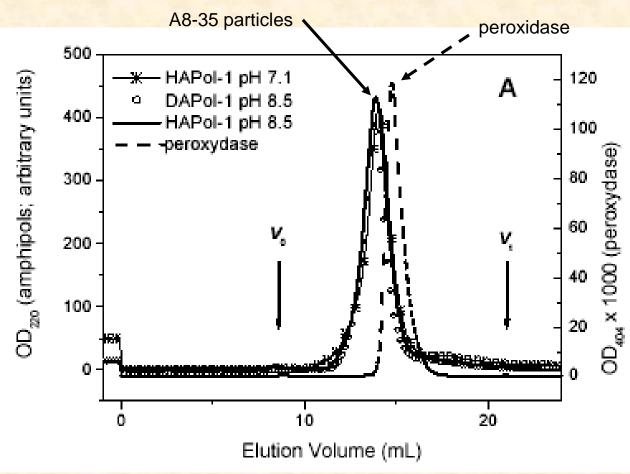

Gohon et al. Anal. Biochem., 2004; Langmuir, 2006.

Molecular dynamics of A8-35 particles


4 nm

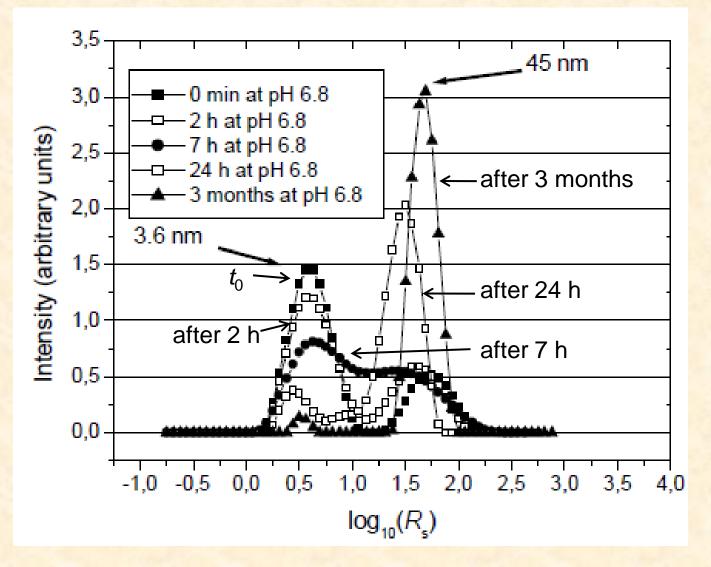
Molecular dynamics of A8-35 particles

4 nm


A8-35 particles vs. nanodiscs

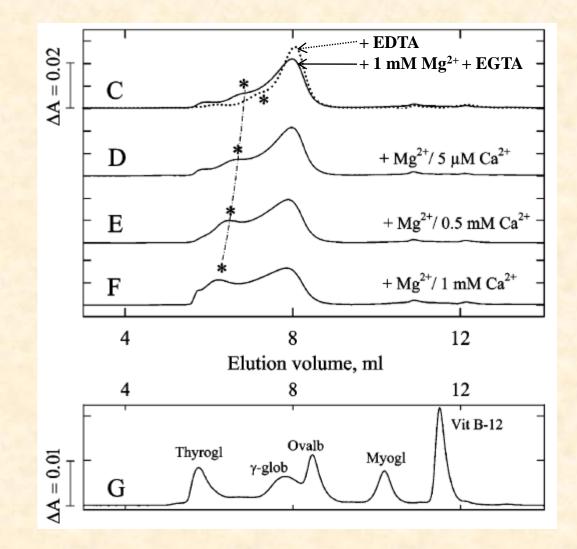
Solution properties of A8-35

(as analyzed by SANS, SEC, AUC, DLS...)


- Fully ionized at $pH \ge 7$
- Highly soluble in water (>200 g/l)
- Self-associates into small, compact, hydrated particles
- comprising ~4 molecules ($M \approx 40$ kDa, $R_{\rm s} \approx 3.15$ nm)
- pH- and Ca²⁺-sensitive

Gohon et al. Anal. Biochem., 2004; Langmuir, 2006.

Aggregation of A8-35 at pH < 7


(light scattering analysis)

From Gohon et al., Langmuir, 2006

Calcium-induced aggregation of A8-35

(SEC analysis)

From Picard et al., Biochemistry, 2006

Amphipols and detergents are freely miscible

- As free mixed particles:
 - ITC : Diab et al., Langmuir, 2007
- At the surface of membrane proteins:
 - FRET: Zoonens et al., Biochemistry, 2007
 - ITC: Tribet et al., Langmuir, 2009

Amphipols and detergents are freely miscible

- As free mixed particles:
 - ITC : Diab et al., Langmuir, 2007
- At the surface of membrane proteins:
 - FRET: Zoonens et al., Biochemistry, 2007
 - ITC: Tribet et al., Langmuir, 2009

 \Rightarrow exchange is possible! (in both directions)

Amphipols and detergents are freely miscible

- As free mixed particles:
 - ITC : Diab et al., Langmuir, 2007
- At the surface of membrane proteins:
 - FRET: Zoonens et al., Biochemistry, 2007
 - ITC: Tribet et al., Langmuir, 2009

Amphipols bind to lipid vesicles (and, in some cases, can fragment them):

- light scattering and electron microscopy: Ladavière et al., J. Colloid Interface Sci., 2001
- fluorescence microscopy: Ladavière et al., Langmuir, 2002

Amphipols and detergents are freely miscible

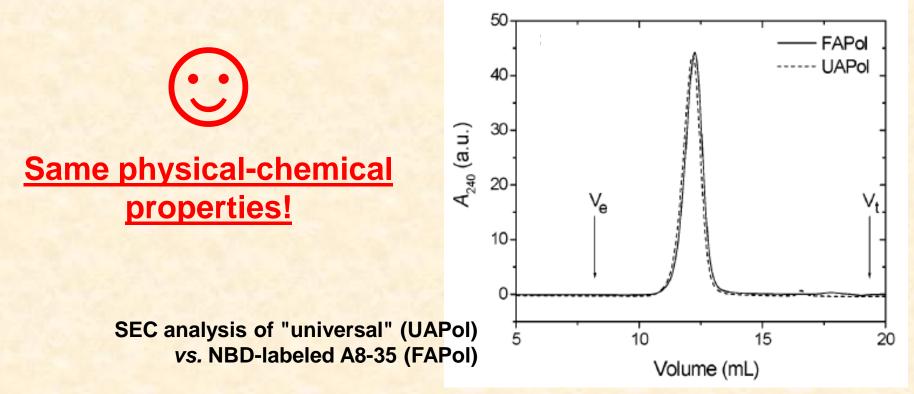
- As free mixed particles:
 - ITC : Diab et al., Langmuir, 2007
- At the surface of membrane proteins:
 - FRET: Zoonens et al., Biochemistry, 2007
 - ITC: Tribet et al., Langmuir, 2009

Amphipols bind to lipid vesicles (and, in some cases, can fragment them):

- light scattering and electron microscopy: Ladavière et al., J. Colloid Interface Sci., 2001
- fluorescence microscopy: Ladavière et al., Langmuir, 2002

 \Rightarrow delivering membrane proteins to preformed membranes is possible!

Diversifying amphipols


1. Functionalized or labeled versions of A8-35

- isotopically labeled amphipols (²H, ³H, ¹⁴C) (Tribet *et al.*, 1997; Gohon *et al.*, 2004, 2006, 2008)
- fluorescently labeled A8-35 (NBD, fluoresceine, rhodamine...) (Zoonens et al., 2007)
- tagged A8-35 (biotinylated (Charvolin et al., 2009); in the tube: oligonucleotide-tagged, histidine-tagged...)
- "universal" (carrying a reactive amine arm) (Zoonens et al., 2007)

Diversifying amphipols

1. Functionalized or labeled versions of A8-35

- isotopically labeled amphipols (²H, ³H, ¹⁴C) (Tribet *et al.*, 1997; Gohon *et al.*, 2004, 2006, 2008)
- fluorescently labeled A8-35 (NBD, fluoresceine, rhodamine...) (Zoonens et al., 2007)
- tagged A8-35 (biotinylated (Charvolin et al., 2009); in the tube: oligonucleotide-tagged, histidine-tagged...)
- "universal" (carrying a reactive amine arm) (Zoonens et al., 2007)

From Zoonens et al., Biochemistry, 2007

Diversifying amphipols

1. Functionalized or labeled versions of A8-35

- isotopically labeled amphipols (²H, ³H, ¹⁴C) (Tribet *et al.*, 1997; Gohon *et al.*, 2004, 2006, 2008)
- fluorescently labeled A8-35 (NBD, fluoresceine, rhodamine...) (Zoonens et al., 2007)
- tagged A8-35 (biotinylated (Charvolin *et al.*, in preparation); in the tube: his-tagged, oligonucleotide-tagged...)
- "universal" (carrying a reactive arm) (Zoonens et al., 2007)

2. Variants of A8-35

- A8-75, A34-35, A34-75, A2-75... (Tribet et al., 1996, 1997; Gohon, 1996)
- C₁₂-A8-75 (C. Tribet; unpublished)
- OAPA-20 etc. (Nagy et al., 2001) (C.R. Sanders/Anatrace)

Diversifying amphipols

1. Functionalized or labeled versions of A8-35

- isotopically labeled amphipols (²H, ³H, ¹⁴C) (Tribet *et al.*, 1997; Gohon *et al.*, 2004, 2006, 2008)
- fluorescently labeled A8-35 (NBD, fluoresceine, rhodamine...) (Zoonens et al., 2007)
- tagged A8-35 (biotinylated (Charvolin *et al., in preparation*); in the tube: his-tagged, oligonucleotide-tagged...)
- "universal" (carrying a reactive arm) (Zoonens et al., 2007)

2. Variants of A8-35

- A8-75, A34-35, A34-75, A2-75... (Tribet *et al.*, 1996, 1997; Gohon, 1996)
- C₁₂-A8-75 (C. Tribet; unpublished)
- OAPA-20 etc. (Nagy et al., 2001) (C.R. Sanders/Anatrace)

- Similar but possibly different physical-chemical and/or biochemical properties
- Potential remains to be fully exploited

Diversifying amphipols

1. Functionalized or labeled versions of A8-35

- isotopically labeled amphipols (²H, ³H, ¹⁴C) (Tribet *et al.*, 1997; Gohon *et al.*, 2004, 2006, 2008)
- fluorescently labeled A8-35 (NBD, fluoresceine, rhodamine...) (Zoonens et al., 2007)
- tagged A8-35 (biotinylated (Charvolin *et al., in preparation*); in the tube: his-tagged, oligonucleotide-tagged...)
- "universal" (carrying a reactive arm) (Zoonens et al., 2007)

2. Variants of A8-35

- A8-75, A34-35, A34-75, A2-75... (Tribet et al., 1996, 1997; Gohon, 1996)
- C₁₂-A8-75 (C. Tribet; unpublished)
- OAPA-20 etc. (Nagy et al., 2001) (C.R. Sanders/Anatrace)

3. Amphipols with radically different chemical structures

- non-ionic amphipols (Prata et al., 2001; Sharma et al., 2008; Bazzacco et al., 2009) (B. Pucci)
- zwitterionic/cationic amphipols (PMAL-B-100) (Gorzelle et al., 2002) (C.R. Sanders/Anatrace)
- amphipols with phosphorylcholine polar heads (Diab et al., 2007) (F. Winnik/C. Tribet)
- sulfonated amphipols (Picard et al., 2006; Dahmane et al., in preparation) (Anatrace; F. Giusti)

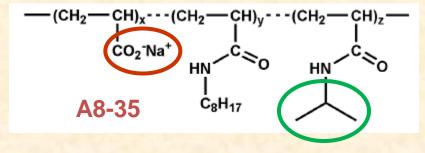
Diversifying amphipols

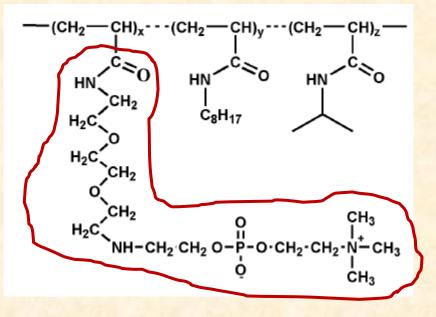
1. Functionalized or labeled versions of A8-35

- isotopically labeled amphipols (²H, ³H, ¹⁴C) (Tribet *et al.*, 1997; Gohon *et al.*, 2004, 2006, 2008)
- fluorescently labeled A8-35 (NBD, fluoresceine, rhodamine...) (Zoonens et al., 2007)
- tagged A8-35 (biotinylated (Charvolin *et al., in preparation*); in the tube: his-tagged, oligonucleotide-tagged...)
- "universal" (carrying a reactive arm) (Zoonens et al., 2007)

2. Variants of A8-35

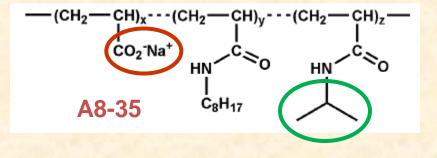
- A8-75, A34-35, A34-75, A2-75... (Tribet et al., 1996, 1997; Gohon, 1996)
- C₁₂-A8-75 (C. Tribet; unpublished)
- OAPA-20 etc. (Nagy et al., 2001) (C.R. Sanders/Anatrace)

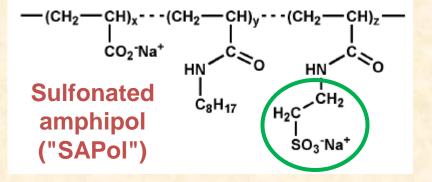

3. Amphipols with radically different chemical structures

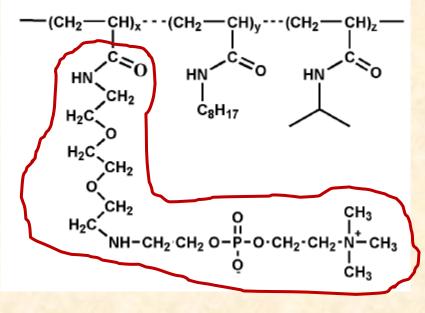

- non-ionic amphipols (Prata et al., 2001; Sharma et al., 2008; Bazzacco et al., 2009) (B. Pucci)
- zwitterionic/cationic amphipols (PMAL-B-100) (Gorzelle et al., 2002) (C.R. Sanders/Anatrace)
- amphipols with phosphorylcholine polar heads (Diab et al., 2007) (F. Winnik/C. Tribet)
- sulfonated amphipols (Picard et al., 2006; Dahmane et al., in preparation) (Anatrace; F. Giusti)

Different physical-chemical properties

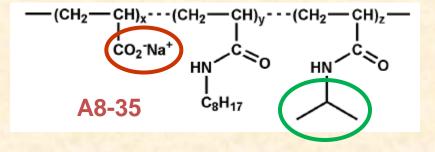
\Rightarrow back to square one!

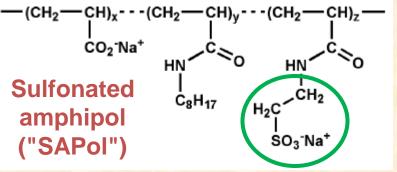

Most heavily studied amphipols



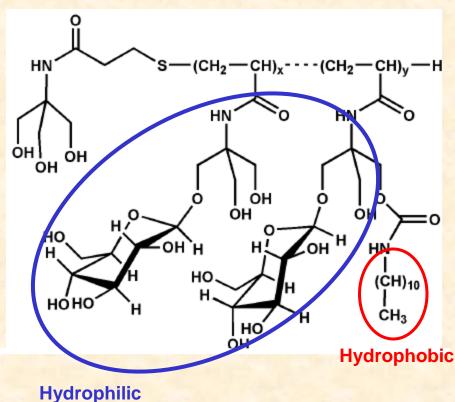

Phosphocholine-based amphipol ("PC-APol") Developed by F. Winnik (U. Montreal) and C. Tribet (ENS, Paris)

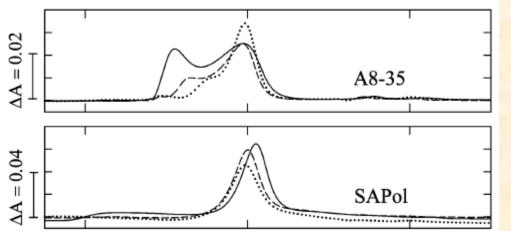
Most heavily studied amphipols

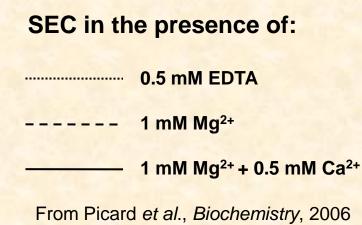



Developed by F. Giusti (IBPC, Paris)

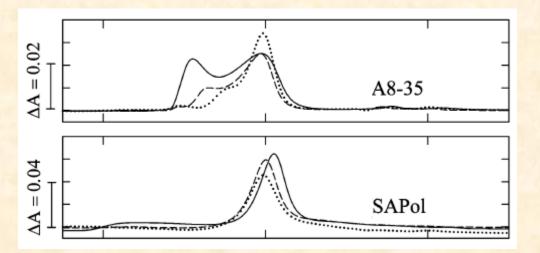
Phosphocholine-based amphipol ("PC-APol")


Most heavily studied amphipols

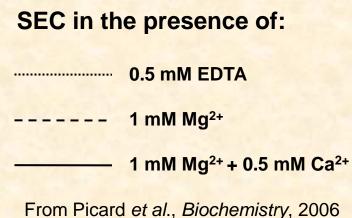



Non-ionic, glucosylated amphipols ("NAPols")

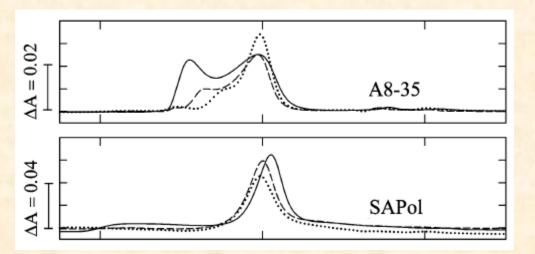
Developed in collaboration with the laboratory of B. Pucci (U. of Avignon)

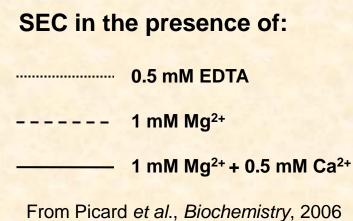


SAPols, PC-APols and NAPols are insensitive to low pH or calcium



SAPols, PC-APols and NAPols are insensitive to low pH or calcium


Conditions			Ca ²⁺ 12 mM			Ca ²⁺ 12 mM
Amphipol	A8-35			C22-43 (PC-APol)		
Turbidity at $t=0$	+	+	+	_	_	+ ^a
% BR in supernatant	80	0	22	91	97	94
$t=15 \min$						


Stability of bacteriorhodopsin/ amphipol complexes in the presence of 1 M NaCl, pH 5, or 12 mM Ca²⁺

From Diab et al., BBA, 2007

SAPols, PC-APols and NAPols are insensitive to low pH or calcium

Conditions			Ca ²⁺ 12 mM				
Amphipol	A8-35			C22-43 (PC-APol)			
Turbidity at $t=0$	+	+	+	_	_	+ ^a	
% BR in supernatant	80	0	22	91	97	94	
$t=15 \min$							

Stability of bacteriorhodopsin/ amphipol complexes in the presence of 1 M NaCl, pH 5, or 12 mM Ca²⁺

From Diab et al., BBA, 2007

Similar results with non-ionic amphipols (Bazzacco, 2009, and articles in preparation).

 Non-ionic and sulfonated amphipols validated for solution NMR (L.J. Catoire, unpublished data) ⇒ access to low pH for studying amide protons.

 Non-ionic and sulfonated amphipols validated for solution NMR (L.J. Catoire, unpublished data) ⇒ access to low pH for studying amide protons.

• Non-ionic amphipols compatible with cell-free synthesis (*cf.* presentation by E. Billon-Denis)

 Non-ionic and sulfonated amphipols validated for solution NMR (L.J. Catoire, unpublished data) ⇒ access to low pH for studying amide protons.

• Non-ionic amphipols compatible with cell-free synthesis (*cf.* presentation by E. Billon-Denis)

• Non-ionic amphipols give access to isoelectrofocusing (*cf.* presentation by P. Bazzacco)

 Non-ionic and sulfonated amphipols validated for solution NMR (L.J. Catoire, unpublished data) ⇒ access to low pH for studying amide protons.

• Non-ionic amphipols compatible with cell-free synthesis (*cf.* presentation by E. Billon-Denis)

• Non-ionic amphipols give access to isoelectrofocusing (*cf.* presentation by P. Bazzacco)

• Other applications remain to be explored (ion exchange chromatography, membrane protein crystallization...)

Main contributors to the amphipol project within our laboratory (1995-2010) • present • past

Paola Bazzacco (NAPols, immobilization, folding GPCRs) Laurent Catoire (solution NMR, SAPols) **Delphine Charvolin** (crystallization, immobilization) **Tassadite Dahmane** (folding BR and GPCRs, SAPols, Ca²⁺- ATPase...) Fabrice Giusti (chemistry chief cook) Yann Gohon (BR, NAPols, PC-APols...) Christel Le Bon (functionalized APols) **Kyu-Ho Park** (cell-free synthesis) Martin Picard (crystallization) Florent Rouvière (chemistry) Manuela Zoonens (tOmpA, FRET, NMR)

Major collaborations

C. Tribet (ESPCI \rightarrow ENS, Paris) polyacrylate- & PC-based amphipols B. Pucci & coworkers (University of Avignon) non-ionic amphipols F. Winnik, C. Diab (U. de Montréal) phosphorylcholine-based amphipols, ITC C. Ebel, F. Gabel, P. Timmins (IBS & ILL, Grenoble) ultracentrifugation, small angle neutron scattering **D.M. Engelman** (Yale) small angle neutron scattering J.N. Sachs (U. Minnesota) molecular dynamics **E.A. Berry** (University of Berkeley) 3D crystallization of *bc*₁/amphipol complexes J.H. Kleinschmidt, C. Pocanschi (U. of Constance) renaturation of β-barrel membrane proteins **F. Rappaport** (IBPC, Paris) **BR** photocycle P. Champeil, M. Picard (CEA, Saclay) sarcoplasmic calcium ATPase activity & stability K. Leonard, M. Flötenmeyer (EMBL, Heidelberg) EM of Complex I/APol complexes J.-L. Banères & coworkers (CNRS, Montpellier) folding of GPCRs K. Martinez, J.-B. Perez (U. of Copenhagen) ligand binding to nAChR immobilized onto beads

Funding

CNRS

Human Frontier Science Program Organization

EC (Biotech, IMPS)

Paris-7 University Ministère de la Recherche et de la Technologie Fondation Rothschild

ANR