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Abstract: We describe an original approach to determining sequence–structure relationships for
DNA. This approach, termed ADAPT, combines all-atom molecular mechanics with a multicopy
algorithm to build nucleotides that contain all four standard bases in variable proportions. These
nucleotides enable us to search very rapidly for base sequences that energetically favor chosen types
of DNA deformation or chosen DNA–protein or DNA–ligand interactions. Sequences satisfying the
chosen criteria can be found by energy minimization, combinatorial sequence searching, or genome
scanning, in a manner similar to the threading approaches developed for protein structure
prediction. In the latter case, we are able to analyze roughly 2000 base pairs per second.
Applications of the method to DNA allomorphic transitions, DNA deformation, and specific DNA
interactions are presented. © 2001 John Wiley & Sons, Inc. Biopoly (Nucleic Acid Sci) 56:
292–310, 2001
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INTRODUCTION

The primary function of DNA is to provide the ge-
netic code for protein synthesis within the cell. How-
ever, DNA contains many other signals that regulate
gene expression, recombination, replication, and even
its own spatial organization. These signals are also
contained in the base sequence, but they are expressed
through a more subtle code that involves local DNA
structure and flexibility. Understanding sequence ef-
fects on DNA structure is therefore a necessary step to
deciphering this code.

Over the last few decades, many examples of se-
quence–structure–function relationships have been

identified for DNA. The best known is certainly in-
trinsic curvature that can be induced by a variety of
base sequences, most notably A-tracts, and leads to
both reduced electrophoretic mobility on polyacryl-
amide gels and enhanced ring closure probabilities.1–3

A-tracts appear to induce curvature via special struc-
tural features including narrow minor grooves and
high propeller twists,4–6 although the exact mecha-
nism remains unclear. It has been shown that intrinsic
curvature plays a determinant role in many essential
biological process including transcription,7,8 recombi-
nation,9 and DNA compaction within the cell.10,11

A number of proteins specifically recognize curved
DNA, or favor sequences that can easily be
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curved.12–14 Such properties thus play an important
role in the indirect recognition of base sequence.15,16

A good example is provided by the TATA-box bind-
ing protein (TBP) that specifically recognizes a region
within eukaryotic RNA polymerase II (RNA pol II)
promoters termed the TATA-box.17,18 As part of the
transcription factor complex TFIID,19,20 TBP binds to
DNA enabling RNA pol II to be correctly positioned
with respect to the transcription start site (TSS).21 It
has to be noted that TBP also exists in archae.22–24

Crystallographic studies have shown that TBP bind-
ing induces strong DNA curvature, local unwinding
and minor groove opening.25–33 The intrinsic bending
and flexibility of the base sequences that constitute the
TATA box have been shown to be important for TBP
recognition both experimentally30,34–39 and theoreti-
cally.40–44 Although such structural properties are
probably common to all TBP binding sites, many of
these sites do not conform to the experimentally es-
tablished consensus sequence (TATAWAWN, where
W implies A or T and N any base45),34,46–48 while
other sites that fit the consensus are not actually bound
by TBP. This makes it difficult for lexical approaches
to use TATA boxes as signals for promoter regions
and thus as pointers to adjacent coding regions.49,50 It
also suggests that adding structural properties to such
sequences analyses could be a useful step forward.51

The structural properties of DNA are also known
to be important for its organization within the cell. In
eukaryotic cells, DNA compaction involves histone
binding to form chromatin.52–55 The basal unit of
chromatin is the nucleosome, which results from the
interaction of 146 base pairs of DNA with a histone
octamer.56 The crystal structure of the nucleosome
shows that the main protein–DNA contacts involve
the phosphodiester backbones of DNA57–59 and it is
consequently not surprising that nucleosome reconsti-
tution in vitro is possible for nearly all type of se-
quences.60 Nucleosome positioning is nevertheless in-
fluenced by the structural properties of certain se-
quences,10,11,61–65 and regions showing preferential
nucleosome binding are known to play an important
role in the regulation of genes expression.66–71 Al-
though methods have been proposed to predict nu-
cleosome positions from sequence data both experi-
mentally63,72 and theoretically,64 it is clear that the
underlying mechanisms are not yet well understood.11

In view of these multiple roles for sequence-de-
pendent structural and mechanical properties, it would
certainly be useful to predict such properties for given
sequences. Unfortunately, this goal is hindered by
simple combinatorial problems. Since the number of
sequences to be studied grows exponentially with
fragment length (already exceeding a million for ten

base pairs), we rapidly reach the limits of standard
experimental or theoretical approaches. One experi-
mental solution to this problem is the SELEX
method,73 which involves an iterative selection of
nucleic acid oligomers satisfying a chosen criteria
from a combinatorial bank of starting sequences.
However, while SELEX can create DNA sequences
with given properties, it cannot be used to analyze
existing sequences or to formulate a predictive theory
linking sequence to structure.

Because of the limited amount of experimental
data available, most theoretical approaches for study-
ing the structural and mechanical properties of DNA
sequences are still based on di- or trinucleotide mod-
els. As an example, Pedersen and co-workers have
used both these approaches to produce structural pro-
files for a group of human promoter sequences that
had previously been aligned using hidden Markov
models.74 The resulting “bendability” profiles showed
that these sequences tend to be highly bent down-
stream of the TSS and weakly bent upstream.75 The
generation of so-called structural atlases for eighteen
complete bacterial genomes indicated that coding se-
quences, intergenic regions, and promoter regions
each present different structural properties, apparently
confirming the importance of sequence–structural–
function relationships for DNA.76 In another ap-
proach, Kono and co-workers scanned long DNA
sequences with an empirical potential derived from
the analysis of 52 protein–DNA complexes whose
structure has been resolved by crystallography and
showed that they could detect the binding sites for a
set of regulatory proteins.77 Other authors have re-
placed structural data with related information on the
sequence-dependent stability of the double helix.78–80

The results show that coding regions can be discrim-
inated by their high thermal stability and that regions
of destabilization are correlated with promoters.

Despite the useful information that can be obtained
by such approaches, it is necessary to recall that
structural analysis of crystallographic and NMR data
shows that local heterogeneity cannot be fully pre-
dicted by di- or even trinucleotide models and many
examples of cooperative behavior over relatively long
base sequences are known.

From a theoretical standpoint, the most flexible
approach would therefore be one that could analyze
any chosen structural or mechanical property of ex-
isting DNA sequences, or could, alternatively, gener-
ate sequences that would best express a chosen prop-
erty, without having to resort to a deconvolution of
existing experimental results. We have recently at-
tempted to formulate such an approach. Our technique
is termed ADAPT. It is based on mean-field theory
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and uses a multicopy algorithm in combination with
an internal coordinate representation of DNA to per-
mit systematic studies of the relationships between
sequence and structural properties.81,82 By effectively
making the base sequence itself a variable of the
problem, this approach overcomes the combinatorial
barrier to studying large numbers of sequences, with-
out obliging us to give up an all-atom representation
of DNA. After presenting the theoretical approach we
have adopted, we will show how ADAPT can be used
to explain the sequence dependence of both the in-
trinsic and interactive properties of DNA. We also
show that the method can be applied to analyzing
properties on the scale of whole genomes.

METHODS

DNA Representation

We have chosen to carry out our simulations using internal
coordinate molecular mechanics. This choice enables us to
greatly improve the performance of energy minimization by
reducing the number of variables needed to model a DNA
fragment by a factor ranging from roughly ten to one
hundred.83 We worked with the molecular mechanics algo-
rithm JUMNA (JUnction Minimization of Nucleic Acids),84

which offers convenient tools for studying DNA helical
structures and their deformations. In this program, a DNA
fragment is built by associating 3!-monophosphate nucleo-
tides. Each nucleotide is positioned using a set of six heli-
coidal parameters, three translations, and three rotations,
with respect to a referential axis system. Junctions are
introduced at the O5!OC5! bonds and maintained by qua-
dratic distance restraints during minimization. Similar junc-
tions are introduced into the sugar rings at the C4!OO4!
bonds. These choices allow easy construction of both ca-
nonical and irregular structures. It is also possible to intro-
duce helical or superhelical symmetry. In the latter case, the
possibility to use a helical axis that itself follows a helical
pathway in space85 makes it possible to build and energy
minimize polymeric DNA conformations with a defined
pitch P and radius of curvature R. This option, which
implies using a number of base pairs within the symmetry
repeat unit equal to an integer number of turns of the double
helix, makes it simple to study the properties of curved
DNA in a systematic way.

The internal flexibility of each nucleotide within
JUMNA is limited to two torsion angles (!, C3!OO3! and
", O3!OP) and two valence angles (C3!OO3!OP and
O3!OPOO5!) along the backbone, two torsions
(O4!OC1!OC2!OC3! and C1!OC2!OC3!OC4!) and
three valence angles (O4!OC1!OC2!, C1!OC2!OC3! and
C2!OC3!OC4!) within the sugar, and to the glycosidic
angle (see Figure 1). JUMNA calculates the conformational
energies using either the FLEX force field86,87 or the AM-
BER force field.88,89 The present studies were all performed

using the FLEX parameters. To mimic the damping effects
occurring between two charges in a polar solvent, a sigmoi-
dal distance dependent dielectric function is used,84,90 while
the net charges on phosphate groups are reduced from "1 e
to "0.5 e to mimic counterion effects. A conjugate gradient
method is used to minimize the energy. A recent study has
shown that, with an appropriate choice of electrostatic
damping parameters, this method can produce stable A and
B forms of DNA,40 and it has also enabled a number of
DNA deformations to be modeled in good agreement with
experiment.85,91–93

Variable Base Sequences

We have used a new application of mean-field theory in
order to make the base sequence a variable of our method.
Algorithms based on mean-field theory are very powerful in
solving computationally complex problems and they are of
special interest for studying biological processes.94 In the
case of conformational searches, a particularly useful ap-
proach involves using many copies of part of the system in
order to enhance conformational sampling. The multiple
copies do not interact with one another and the rest of the
system senses the mean field generated by the copies. This
approach has already been used to successfully study the
specificity of ligand–protein interactions, using many copies
of the ligand to search for binding pathways to a macromo-
lecular target site95,96 and extensions to multiple copies of
the protein are possible.97 It can also be used for positioning
amino acid side chains, or complete amino acid loops,
within a globular proteins.98–103

We have applied mean-field theory to model the influ-
ence of the four bases of DNA (adenine, thymine, guanine,
and cytosine) within a single multicopy nucleotide (see
Figure 1). These nucleotides, which we have termed “Lex-
ides” (in reference to “Lexitropsins,” which were conceived
as “sequence-reading” ligands),104 are built from the stan-
dard library used within JUMNA. The pyrimidine N1 (C
and T) and the purine N9 (A and G) atoms are linked to the
sugar C1! atom. The bases are coplanar and, as for standard
nucleotides, have no flexibility, excepting the rotation of the
thymine C5 methyl group. The base orientation with respect
to the sugar moiety varies with the glycosidic angle
(O4!OC1!ON9OC4 for purines and O4!OC1!ON1OC2
for pyrimidines). Within a given lexide i, each base k is
associated with a coefficient of presence C(i, k). The sum
of all C(i, k) being set equal to one. Generally, within an
oligomer, each base k of lexide i feels the mean field formed
by the four bases of all other lexides j, but does not feel the
presence of the other three bases of i.

By setting all C(i, k) equal to 0.25, each of the four
bases composing the lexide contribute equally to the con-
formational energy calculations and it becomes possible to
study the conformational properties of a DNA with an
averaged base sequence. We term such lexides N, implying
“sequence neutral” nucleotides. An oligomer containing
only “neutral” lexides is denoted (dNn ! dNn). Conventional
“pure” nucleotides may be obtained by setting any single
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coefficient to unity, e.g., dG implies using the base coeffi-
cients: CT # CC # CA # 0 and CG # 1, while a purine can
be created by setting CT # CC # 0, and CA # CG # 0.5. It
is also remarked that it is possible to save time in treating
canonical Watson–Crick base pairs by using only a single
set of lexide coefficients for both bases. Each coefficient
then controls the presence of a given base in one strand and
of its paired partner in the other strand.

By simply varying the lexide coefficients it becomes
possible to study all possible base sequences within a given
DNA fragment. This can represent enormous time savings
and can also simplify conformational searches, since, as
other studies have shown,105,106 the use of multicopy algo-
rithms tends to lower the energy barriers in the effective
energy landscape.

Energy Calculations in the Presence
of Lexides

The presence of lexides within a DNA fragment implies that
any pairwise energy contribution involving either one or
two atoms from the bases of the lexides will be multiplied
by the corresponding coefficients C(i, k) of these bases. In
order to rapidly calculate the energy of a given molecular
conformation for any given set of lexide coefficients (or,
more specifically, any given base sequence), it is convenient
to store the pairwise energy contributions in a matrix of
dimension n $ n for n lexides (or lexide pairs), grouping
together all those terms multiplied by a given coefficient
(along the diagonal, ii, of the matrix) or by a given pair of
coefficients (in the upper triangle, ij, of the matrix). This

FIGURE 1 Schematic diagram of a lexide within the internal and helicoidal representation of
DNA used within JUMNA. Each lexide, shown here in an exploded view, is constituted of a
coplanar arrangement of the four standard bases bound to a common C1! atom. The contribution of
each lexide base to the conformational energy of DNA is regulated by the coefficients of presence:
CG, CA, CC and CT.
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matrix has a depth of 16 elements containing the grouped
energy terms corresponding to all possible combinations of
the base indices, k, belonging to lexide i, and l, belonging
to lexide j (although only four of these elements will be
used if i # j). All the terms involving atoms from the
phosphodiester backbones or normal (nonvariable) bases
are independent of the coefficients and are stored in an
additional matrix element, OO.

Once this matrix is constituted for a given molecular
conformation the energy of any base sequence involving the
lexides within this conformation can be calculated very
rapidly by simply summing the terms of the matrix multi-
plied by the appropriate choice of lexide coefficients. If we
begin by optimizing the molecular conformation using a
neutral (dNn ! dNn) sequence, then to a first approximation
we can assume that this conformation can be considered
valid for any given base sequence. However, once we have
located the sequence that satisfies our energy criteria (see
below), nothing prevents us from reoptimizing the confor-
mation for this sequence to improve the quality of the
model. In fact, in many cases that we have studied so far,
staying with the conformation obtained with the neutral
sequence turns out to be a very reasonable approximation.

Optimization and Sequence Scanning

Although it is possible to minimize the energy of a structure
containing lexides with respect to their coefficients, that is
to say, changing the base sequence, it is impossible to
compare two molecules of different chemical nature. This is
due to the fact that molecular mechanics force fields calcu-
late conformational, and not formation, energies. This is not
a problem since our goal, the study of the influence of the
sequence upon the structural properties of DNA, can be
reached by comparing two distinct conformations of the
same molecule, which we will term the target and reference
conformations. If we keep the lexide coefficients identical
within these two conformations, the energy difference be-
tween them is a valid quantity since we are comparing two
chemically identical molecules (Figure 2). If we then allow
the lexide coefficients to evolve, we can search for the set of
coefficients that best stabilizes the target conformation with
respect to the reference conformation. In energy matrix
terms, this means that we will need to calculate an energy
matrix for both the target and reference conformations.
These matrices will then be subtracted from one another,
before being multiplied by the chosen lexide coefficients.
We can thus imagine searching for a base sequence that will
stabilize, for example, a curved DNA with respect to a
straight one. We can also imagine asking which sequence
will most stabilize a protein–DNA complex with respect to
a free DNA. In this case, the bound molecule is not asso-
ciated with any lexide coefficients, and as far as the energy
matrix is concerned, can be simply treated in the same way
as the phosphodiester backbones of DNA.

How can we go about finding the optimal coefficients to
solve such problems? ADAPT in fact offers three ways of
doing this. Historically, the first approach we developed was

energy minimization. The variables of the minimization are
simply the lexide coefficients. However, it is necessary to
respect the normalization constraint imposed on each set of
four coefficients. This constraint can be integrated into the
problem analytically by redefining a set of four independent
variables, Vk, such that,

VK # %C&i, k'/C&i, max'(1/2

where C(i, max) is the maximum of the four coefficients.
Similarly, coefficients respecting the normalization criteria
can be recovered as

C&i, k' # Vk
2/ ¥

l#1

4

Vl
2

This problem can also be solved by generating three curvi-
linear variables that respect the normalization constraint.
These variables can be thought of as defining the position on
the surface of a four-dimensional hypersphere with unit

FIGURE 2 Calculation steps involved in sequence opti-
mization. Reference and target conformations are optimized
with respect to their conformational energy using JUMNA.
They generally have an averaged base pair sequence,
(dN)n ! (dN)n. The energy matrices resulting from these
calculations are used within ADAPT to find the sequence
that optimally reduces the deformation energy separating
the reference and target conformations. If necessary, one
can loop back to JUMNA for further conformational opti-
mization.
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radius. We have found that both these methods lead to
identical results.

Carrying out energy minimization implies calculating
the energy derivatives with respect to the lexide coefficients.
This can be done very easily since all the energy terms are
either linearly dependent on the coefficients or are com-
pletely independent. The only complication comes from the
fact that the minimizer requires the C(i, k) derivatives to be
converted into Vk derivatives. It should be noted that which-
ever the technique used to define the minimizer variables,
the energy derivatives become identically zero for pure
sequences (where one coefficient C(i, k) is unity and the
others are zero). In order to determine whether the station-
ary points that we locate by energy minimization are true
minima and not saddle points, we have also calculated the
Hessian matrix of the second derivatives of the energy with
respect to the coefficients. Diagonalizing this matrix leads to
a set of eigenvalues that will all be positive in the case of a
true energy minimum.

It should be noted that there is no theoretical requirement
for energy minimization to lead to pure base sequences. For
this reason, we included the possibility of forcing a pure
sequence to appear. This involves using the normalized
standard deviation $L of the lexide coefficients C(i, k),
which equals unity for a pure base and zero for a neutral
base:

$L # %&4/3' !
k#1

4

&C&i, k'2 % 0.25'(1/2

To obtain a pure sequence, we force $L to become unity
using a simple quadratic restraint. In fact, for reasons that
are still not clear, almost all the problems we have studied
using ADAPT lead to perfectly, or almost perfectly, pure
sequences (within 1–2%). Consequently, $L has rather been
used to prevent pure sequences from appearing too quickly
(e.g., in the case of ligand binding) than for forcing pure
sequences to appear.

If we are only interested in “pure” base sequences as
solutions to our problem, then energy minimization can be
replaced by a simple search of all possible base combina-
tions. For sequences of length n, this implies calculating
energies from the energy matrices for 4n combinations of
lexide coefficients. This can be done in a matter of minutes
for n ) 12. For longer sequences, an analysis of the energy
matrices shows that, for both standard and deformed double
helices, a given lexide only interacts significantly with only
two neighboring base pairs on each side. This implies that
combinatorial solutions for long sequences can be acceler-
ated by building up the overall result from a set of con-
nected pentanucleotide solutions.82

Finally, we can study the energy difference between our
target and reference sequences for all possible sites along a
given genomic sequence.82 This “sequence scanning” in-
volves calculating the deformation energy inside a window
(having the same length as the reference and target oli-
gomers), which is moved base by base along the sequence

to be analyzed. This approach, which is analogous to the
“threading” methods used for knowledge-based protein
structural predictions,107 can be used to characterize specific
structural properties of an entire genome directly from its
sequence. The present version of the program can scan
roughly 2000 base pairs per second. The most exciting
application of genome scanning is clearly with target con-
formations that involve protein binding. In such cases, we
can hope that the regions presenting the lowest deformation
energy will be likely protein binding sites.

Building Reference and Target
Conformations

As mentioned above, the reference conformation, which in
all the cases considered here will be a standard B-DNA
state, is built using a neutral sequence, (dNn ! dNn), and
then energy minimized. With the FLEX force field this leads
to a conformation that corresponds well with the canonical
parameters of B-DNA deduced from crystallographic and
NMR studies of DNA oligomers. In most of the cases
studied, the DNA fragments used contain only N lexides;
however, a lexide segment can also be combined with
standard nucleotides—for example, by placing a lexide seg-
ment between fixed sequence segments. Target conforma-
tions are also constructed using neutral sequences, but en-
ergy minimization is carried out in the presence of con-
straints that impose the desired change in structure. The
restraints available within JUMNA are of many types, act-
ing upon axial curvature, interatomic distances, helicoidal
parameters, sugar puckers, etc. In the case of protein bind-
ing, we use the CONTACT utility program108 to create a set
of interatomic distances between the DNA atoms belonging
to the protein–DNA interface that are able to reproduce the
conformational impact of the protein. These restraints may
be supplemented by including part or all of the protein in the
energy matrix calculations carried out for the target confor-
mation. We created the PCHEM utility program for this
purpose. To allow for imprecision in the experimental data
and also for the limited flexibility of the JUMNA internal
coordinate model, protein–DNA interface atoms can be
given the freedom to move within spheres of a chosen
radius. In the calculations presented here a radius of 0.4 Å
was used.

RESULTS AND DISCUSSION

In order to illustrate the possibilities of our new ap-
proach, we will present six different applications that
treat successively an allomorphic transition of the
double helix, a uniform structural deformation, ligand
binding, single protein binding, and then genome
scanning applied to both the TATA-box binding pro-
tein and a model of the nucleosome.
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B–Z Allomorphic Transition

Experimental studies have revealed that the purine–
pyrimidine (RY) alternating sequences strongly favor
the B to Z transition.109 The most stable Z-DNA
structure is obtained with an alternating GC sequence,
syn-guanosine-p-anti-cytosine, with C4!-exo and C2!-
endo sugars for G and C respectively. The relative
ease of forming Z-DNA in terms of dinucleotide steps
is as follows: GC * AC * AT # GG * GA (where
we adopt a notation corresponding to syn-p-anti for
each nucleotide pair).110–112 We used the combinato-
rial sequence searching procedure of ADAPT to
check whether we could reproduce this order. Calcu-
lations were carried out on (dN18 ! dN18) oligomers,
using a B-DNA reference conformation and a Z-DNA
target conformation and imposing dinucleotide sym-
metry constraints in both cases. Using the energy
matrices obtained from these calculations, ADAPT
determined the deformation energy required for the
B–Z transition as a function of base sequence. The
combinatorial procedure led to results for the ten
possible dinucleotide sequences. The sequences found
were effectively those favored experimentally, GC
* AC * GA + AT * GG, and this order is surpris-
ingly close to the experimental result. Given that we
are only estimating transition enthalpies and not free
energies, this result also suggests that the sequence
dependence of the B–Z transition is predominantly
enthalpic. It is also remarked that if we use the energy
minimization procedure of ADAPT, we also find a
“pure” GC sequence to be the most favorable for
creating Z-DNA.

Uniform Deformation—Curved DNA

To investigate the sequence dependence of DNA cur-
vature, we constructed and energy optimized the con-
formations of (dN18 ! dN18) neutral sequence oli-
gomers with radii of curvature ranging from 900
down to 45 Å (the radius of DNA within a nucleo-
some core particle). This was done using the super-
helical symmetry constraints of JUMNA.85 A 10 base
pair repeat symmetry was imposed on both the curved
target conformation and the straight B-DNA reference
conformation. Energy minimization was carried out
within ADAPT to find the optimal 10 base-pair se-
quences favoring curvature.

The optimized sequences are once again found to
be made of “pure” bases. For target conformations
with very small curvature, the optimal sequences are
made up of only GC base pairs. However, as the
curvature increases, the experimentally observed pref-
erence for A-tracts separated by GC pairs appears. A

single sequence, (A4T4CG)n, is found to be optimal
for radii of curvature ranging from 225 to 56 Å. For
more extreme curvature, either (A3T4CGC)n or
(A3T5CG)n are found to be energetically optimal. In
each case, the sequence is placed within the curved
oligomer so that the minor groove of the A-tract lies
on the inside face. Combinatorial sequence searches
confirm the results of the energy minimization for
radii of curvature in the range 225–75 Å. Outside this
range there are some minor changes, but in each case
the energy difference involved is typically of the order
of 0.01 kcal/mol.

All the optimal sequences identified resemble
those used by Hagerman in his studies of the sequence
dependence of curvature and are known experimen-
tally to induce gel retardation.113 It should be re-
marked that even if the energy differences between
straight and curved DNA are less than a kcal/mol per
turn of the double helix, ADAPT is still able to
identify correct target sequences. It is also worth
noting that, in agreement with a previous study made
with the JUMNA algorithm, sequence-dependent in-
trinsic curvature can apparently be successfully mod-
eled without considering the effects due to explicit
water molecules or counter ions.85

Ligand Binding—Netropsin

Netropsin is a well-known sequence-specific DNA-
binding ligand. It is a cationic (net charge ,2), pep-
tide-like antibiotic and antitumoral agent, which binds
in the minor groove of DNA114 most strongly to AT
base pairs and with a preference for alternating se-
quences.115 Since ligand positioning could be ex-
pected to depend on the sequence of the target DNA,
we used two rounds of the structure-sequence gener-
ation procedure presented in methods section (see
Figure 2). We first energy minimized a canonical
B-DNA reference conformation with a CGCN12CGC
sequence. The target conformation was a complex
between an oligomer of the same sequence and ne-
tropsin (held in its crystallographic conformation).114

The ligand was placed at the entrance to the central
part of the minor groove of the target oligomer, sev-
eral ångstroms away from the DNA bases. In the first
round of energy minimization with respect to the base
coefficients, we restrained the appearance of a “pure”
sequence by limiting $L, the normalized standard
deviation rms (see Methods), to 0.25. In the second
round of calculations with JUMNA, the structures of
the isolated DNA and of the complex were reopti-
mized with the sequence obtained by the first ADAPT
calculations. The final ADAPT cycle was then carried
out allowing a pure sequence to appear. The result
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obtained was CGCGGTTTTATAAACCGC, where
the underlined characters indicate the ligand binding
site.

As observed experimentally, this site consist of a
partially alternating AT-tract. The resulting complex
was finally energy optimized, allowing the ligand to
adapt its internal conformation to the target site. Ne-
tropsin is then well situated within the minor groove,
interacting with six base pairs in a manner similar to
that seen in the crystallographic complex.114 It is
interesting to note that the electrostatic properties of
netropsin reach beyond its physical binding site and
favor AT pairs (which are associated with more neg-
ative minor groove potentials) for 9 out of the 12 base
pairs in the sequence-adaptable region.

Single Protein Binding: TBP

Gene expression is controlled in a very sophisticated
way by a large variety of transcription factors that act
both inside and outside the promoter region. Identi-
fying coding sequences and control regions is thus
directly linked to identifying promoters. Unfortu-
nately, as mentioned in the introduction to this article,
transcription factors often have poorly defined con-
sensus sequences. This implies an important role for
indirect protein–DNA recognition and the need to
understand the structural and mechanical properties of
the DNA target sequences. This is notably the case for
TBP, whose role in gene transcription has already
been discussed. As a first step to solving such prob-
lems, we used the energy minimization and combina-
torial search options of ADAPT to determine the
optimal sequences for TBP binding sites. The calcu-
lations were performed with three pairs of target and
reference conformations that varied only in terms of
length: (dN10 ! dN10), (dN16 ! dN16), (dN24 ! dN24). In
each case, the reference conformation is an energy-
minimized B-DNA, while the central ten base pairs of
the target conformation reproduce the DNA confor-
mation within the human TBP/DNA complex.29 Tar-
get oligomers beyond ten base pairs in length were
used to see if the additional energy necessary to form
junctions with B-DNA on either side of the protein-
binding site influenced the optimal target sequences.

Energy minimization and combinatorial search ap-
proaches gave very close results. Each of the three
pairs of target and reference conformations led to pure
base sequences in roughly 200–300 cycles of conju-
gate gradient minimization. Identical binding site se-
quences, TATTTAAA, were obtained with all three
fragments, although the deformation energy increased
from 69 kcal/mol for 10 base pairs (bp) to 73 kcal/mol
for 16 bp and finally 85 kcal/mol for 24 bp. Combi-

natorial searching found the sequence TATTTTTA as
the global optimum binding site, once again for all the
three fragments. The global optimum differs from the
energy minimum sequence by two TA inversions in
positions 6 and 7. The energy gain for the three
fragments is of the order of 1.7 kcal/mol. The Hessian
matrices calculated for the deformation process reveal
that there are in fact only a few low energy minima
and that the energy landscape is strongly funneling.
The energy-optimized sequences indeed turn out to be
true minima, even if the global energy minimum is
not reached. Given the nature of the energy surface,
the performance of the minimization procedure could
certainly be improved by using a minimum-hopping
algorithm.

By interchanging the target and reference confor-
mations (i.e., changing the order of subtraction of the
energy matrices), it is possible to search for the se-
quences that least favor TBP binding. This trial led to
deformation energies between 122 and 138 kcal/mol
with pure binding sequences made principally of GC
base pairs: GGGCCCTC for the 10 bp fragments and
GGGCCCTT for the 16 bp and 24 bp fragments. This
result implies that the range of deformation energies
for TBP binding as a function of sequence lies be-
tween 40 and 50 kcal/mol for the three different
fragments used. It is also possible to obtain this result
from the energy matrices themselves, by summing all
the energy variations with respect to sequence for the
8 base pairs of the binding site.

By using the combinatorial search on the 10 bp
fragment, we were able to define a consensus se-
quence by grouping all the binding sequences that fell
within 5 kcal/mol of the global optimum energy of
67.4 kcal/mol. We obtained the consensus kTATW-
WWWRn, which is surprisingly close to the human
TBP binding consensus of sTATAAAWRn [TRANS-
FAC data base accession number M00252]116 given
that the current model of TBP binding is limited to the
deformation induced in DNA (note K # G/T, S
# G/C, R # A/G, W # A/T, and N # A/C/G/T). We
can analyze the origins of this consensus in more
detail by looking at the energy variations for each
lexide pair forming the binding site as a function of
the DNA sequence. The results shown in Figure 3
have been obtained by taking into account the fact that
a given lexide pair only interacts significantly with
two nearest neighbor pairs on either side (see Meth-
ods). The colored bars in the figure indicate the vari-
ations in energy for each possible base at each lexide
position and the TBP binding site occupies positions
2–9. The bars at positions 2, 3, and 4 enable us to see
the domination of T, A and T respectively for these
sites, and it is also clear that adenine dominates at
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position 5. If we look at the overall energy range at
each site, we can see sequence dependence is only strong
for the positions 2–9 belonging to the binding site. It is
also worth noting that, within the binding site, positions
5 and 6 have relatively small ranges of deformation
energy. We can assume that the energy range (i.e.,
sequence discrimination) becomes stronger when the
specific base–amino acid side chains hydrogen bonds
that involve these two positions are present.26

Genome Scanning: TBP

Maintaining the same target and reference conforma-
tions discussed above, we can use the sequence scan-
ning option of ADAPT to make a first attempt at

“reading” the structural properties of genomic se-
quences. Given the results obtained with the combi-
natorially defined consensus discussed in the previous
section, it is reasonable to suppose that sequences
with low deformation energies will be sites favoring
TBP binding. We first tested this approach on five
human promoter sequences, roughly 2000 bp in
length and containing a TATA box.82 The results
showed that the experimentally identified TATA
boxes fell within the 20% of the lowest deformation
energies for each sequence and one of them was
actually the global energy minimum for the sequence
studied. These results were encouraging, especially
since most of the sites we targeted were rather far
from the standard TBP consensus.

FIGURE 3 Variation of the deformation energy for TBP binding as a function of sequence. Each
vertical bar shows the energy range for a given base pair along the binding site (positions 2–9). The
colored bars show the energy range for each of the four bases at each site as a function of the
sequence of the two nearest neighboring base pairs on either side of the site. The bases with the
lowest deformation energies at each site constitute the computationally derived consensus binding
sequence. The bars with the largest energy range represent the sites with the highest sequence
discrimination for TBP binding.
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In an attempt to systematize this study, we ex-
tended our analysis to a much larger number of well-
defined promoter sequences. We considered a total of
192 human sequences and the 605 vertebrate se-
quences that were available within the eukaryotic
promoter database (EPD).117,118 The EPD is a collec-
tion of nonredundant RNA pol II promoters for which
the TSS has been determined experimentally. In each
case, sequences with lengths of 1000 or 2000 bp were
considered, with the TSS lying exactly in the midpo-
sition (hereafter numbered as position ,1). The
groups of human sequences, termed hs1000 and
hs2000 according to their length, and numbered
["499:,500] and ["999:,1000], respectively. The
vertebrate sequences are similarly termed vs1000 and
vs2000. If the sequence fragment around the TSS is
smaller than the required length, it is completed by a
segment of neutral bases. The percentage of such
filling segments was 14 and 22% for hs1000 and

hs2000 and 5 and 8% for vs1000 and vs2000. It is also
assumed that each promoter sequence effectively con-
tains a TBP binding site.

Based upon the study of 502 eukaryotic promoters,
Bucher estimated the position of the TATA box as
lying within the ["39:"9] region.45 If the experimen-
tally defined positions of the TSS are correct, if there
is really a TBP binding site, and if our structural
approach indeed detects TATA boxes, we should find
a high concentration of low energy deformation sites
within this region. In order to judge the results, we
have used two acceptance windows, one roughly 50
bp in width positioned around Bucher’s estimate at
["50:,1] and a second 300 bp window centered
around the same region, ["200:,100]. This larger
window is chosen to take into account more com-
pletely experimental uncertainties in the location of
the TSS, following earlier comparative study of pro-
moter detection algorithms.49

Table I Distribution of Global Energy Minima for the Promoter Sequences from (a) Human Genome Sets hs1000
and hs2000, and (b) Vertebrate Genome Sets vs1000 and vs2000a

(a) Human Sequences

hs1000 hs2000

Minima Mean Mode $ Minima Mean Mode $

DNAAlone 192 "33 "29 267 192 "73 "30 579
DNAAA 192 "35 "29 266 192 "79 "30 551

Percentage of Global Energy Minima Within the Specified Windows

[Mode - 2] ["50:1] ["200:100] [Mode - 2] ["50:1] ["200:100]

DNAAlone 11 27 42 6 16 25
DNAAA 13 30 41 8 20 28

(b) Vertebrate Sequences

vs1000 vs2000

Minima Mean Mode $ Minima Mean Mode $

DNAAlone 620 "76 "30 246 619 "119 "30 541
DNAAA 609 "71 "30 250 626 "96 "30 534

Percentage of Global Energy Minima Within the Specified Windows

[Mode - 2] ["50:,1] ["200:100] [Mode - 2] ["50:1] ["200:100]

DNAAlone 12 30 50 7 18 28
DNAAA 15 32 51 10 22 32

a $ is the standard deviation of the distributions.
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FIGURE 4 Histogram of the global minima distribution for (a) the vertebrate vs1000 and (b)
vs2000 sets of promoter sequences. The TSS is situated at position ,1 and the presumed TBP
binding site should lie in the window ["39:"9].45 Similar results (not shown) are obtained for the
human genome sequences.
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Since TBP is a well-conserved protein among eu-
karyotes,25–30 we have used the structural information
from the TBP/DNA human complex29 to analyze both
the human and vertebrate promoter sequences chosen.
Sequence scanning has been carried out in two ways.
First, we used a target conformation (10 bp in length)
deformed to match the crystallographic TBP binding
site, as described in the section on single protein
binding, and termed here DNAAlone. Second, in order
to estimate the role of the protein partner in the
binding, we constructed a new target, DNAAA, where
the deformed DNA fragment is supplemented by the
presence of the amino acids belonging to the protein–
DNA interface (see Methods). In this case, the energy
difference between the reference B-DNA conforma-
tion and the target conformation includes both the
DNA deformation and a significant part of the pro-
tein–DNA interaction energy.

The statistics summarizing the location of the en-
ergy minima are presented in Table I and shown
graphically in Figure 4. For both human and verte-
brate promoter sequences, similar mean positions
and rms deviations are found whether we use the
DNAAlone or DNAAA targets. The modal point of the
energy minima distribution is expected to fall around
"30 position if TATA-box binding sequences are
indeed being detected. Table I shows that this is the
case for both human and vertebrate sequences and
also that the concentration of minima around this
point is significant: the ["50:,1] window containing
approximately a third of the total observations and the
["200:,100] region containing almost half of them
for the 1000 bp sequences. Concentrations are some-
what lower for the longer 2000 bp sequences. These
results are encouraging; however, they indicate that
the global minimum alone cannot be used directly to

Table II Distribution of Local Energy Minima Within Two Windows Containing the Supposed TBP Binding Sites:
(a) [!50:"1] and (b) [!200:"100]a

(a) ["50:,1]

hs1000 vs1000

Minima Mean Mode $ Minima Mean Mode $

DNAAlone 192 "27 10 605 "28 "30 10
DNAAA 192 "26 "28 10 605 "27 "30 9

Percentage of Local Energy Minima Within the Specified Windows

[Mode - 2] ["39:"9] [Mode - 2] ["39:"9]

DNAAlone 41 100 49 90
DNAAA 44 100 50 90

(b) ["200:,100]

hs1000 vs1000

Minima Mean Mode $ Minima Mean Mode $

DNAAlone 192 "53 "28 71 605 "52 "29 72
DNAAA 192 "46 "28 68 605 "50 "30 71

Percentage of Local Energy Minima Within the Specified Windows

[Mode - 2] ["39:"9] [Mode - 2] ["39:"9]

DNAAlone 29 60 30 55
DNAAA 30 55 32 55

a Results are again shown for the promoter sequences from the human genome, hs1000 and hs2000, and from vertebrate genomes, vs1000
and vs2000. $ is the standard deviation of the distributions.
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detect the TBP binding sites. It is also found that
correctly detected sites do not obey any fixed energy
criteria. If we now limit ourselves to the energy dis-
tribution within the ["50:,1] and ["200:,100] win-
dows, it is again found that there is a very significant
proportion of the local energy minima within these
windows that lie in the vicinity of the supposed
TATA-box sites. Using Bucher’s definition of such
sites as ["39:"9], more than 50% of the minima lie
within this region for the 300 bp window and at least
90% for the 50 bp window (see Table II and Figure 5).
These results confirm that ADAPT can discriminate
the region directly upstream the TSS as corresponding

to TBP binding sites for a non-negligible part of the
sequences studied.

On the basis of this analysis, it seems unreasonable
to limit detection to the single global energy mini-
mum. We have therefore extended our detection cri-
teria to include energy minima that fall above the
global minimum, but within a given percentage, plim,
of the total energy variation seen for the fragments
analyzed. Table III contains the results of this relaxed
criteria, using a plim of 10 and 15% above the global
minimum. Any sequence that has an energy minimum
satisfying this criteria within the chosen 50 or 300 bp
window is considered to be a positive detection.

FIGURE 5 Histogram of the local minima distribution for the vertebrate vs1000 set of promoter
sequences. The TSS is situated at the position ,1. (a) ["50:,1] window, (b) ["200:,100]
window.
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When plim is set to either 10 or 15%, roughly 50% of
sites are detected for the 50 bp window and roughly
70–80% for the 300 bp window. It can also be noted,
in the last line of the table, that if we combine the sites
detected using the DNAAlone and DNAAA target con-
formations, then we get a slightly higher detection
rate than with either target alone.

The consensus sequences obtained with the sites
detected using DNAAlone, DNAAA, or using both tar-
gets are presented in Table IV. They are very close to
each other and to the experimental consensus. When
plim is nonzero, sites detected by each of the systems
show a larger sequence tolerance, but with variations
for DNAAlone and DNAAA. These results confirm the
previous observations (Table IV) that the two TBP
targets localize somewhat different sequence sets and
also that the presence of the interface amino acids
makes for finer sequence discrimination.

Several refinements to this work can be envisaged,
including using TBP conformations from other spe-
cific organisms, extending the target conformation to

take into account the binding of multiple transcription
factors, and naturally, improving the calculations of
the DNA deformation and the DNA–protein interac-
tion energies. Concerning the first of these possibili-
ties, it is, however, interesting to note that the human
TBP target conformation used presently in fact per-
formed very well on the vertebrate promoter se-
quences we studied.

It should be noted that any sequence analyzed
using ADAPT will lead to an energy minimum,
whether or not the sequence in question contains
the targeted binding site. Since we have already
remarked that correct binding sites cannot be dis-
tinguished using an energy criteria alone, it will be
necessary to supplement ADAPT results to obtain
rigorous site detection. It is possible to imagine
using aligned homologous sequences to improve
detection in a manner analogous to phylogenetic
footprinting.119,120 However, the results already ob-
tained suggest that ADAPT can provide informa-
tion on protein binding sites that can represent a

Table III Number of TATA Boxes Correctly Described by ADAPTa

(a) Human Sequences

hs1000 hs2000

["50:,1] ["200:,100] ["50:,1] ["200:,100]

plim 0 10 15 0 10 15 0 10 15 0 10 15

Percentage of Sites Detected

DNAAlone 27 57 72 42 79 88 16 44 57 25 58 74
DNAAA 30 55 69 41 75 89 20 46 60 28 61 79
Total 32 61 74 47 82 92 21 51 62 31 66 82

(b) Vertebrate Sequences

vs1000 vs2000

["50:,1] ["200:,100] ["50:,1] ["200:,100]

plim 0 10 15 0 10 15 0 10 15 0 10 15

Percentage of Sites Detected

DNAAlone 30 60 73 50 82 91 18 51 62 28 67 82
DNAAA 32 60 72 51 81 93 22 51 65 32 69 85
Total 37 65 76 59 86 95 25 57 68 36 74 88

a Results are presented for the 50 and 300 bp windows around the TSS, with the TBP binding site alone (DNAAlone) and the TBP binding
site with the amino acids defining the surface contact (DNAAA). The total line corresponds to all the unique TATA boxes detected by the two
targets. (a) Human genome sets and (b) vertebrate genome sets.

ADAPT 305



very useful complement to more standard lexical
analyses of genome sequences and it is already
feasible to couple ADAPT with consensus-search
algorithms.

Genome Scanning—The Nucleosome

To illustrate the application of ADAPT to a multiple
protein binding situation, we have looked at the pos-
sibility of detecting preferential nucleosome binding
sites. This is a difficult problem since the histone core
shows only slight base sequence preferences that,
despite their biological importance, often involve free
energy changes of the order of fractions of a kcal/mol.
In this preliminary study, we have used a simplified
model of the DNA wound around the nucleosome
core. This model was built with an averaged se-
quence, (dN146 ! dN146), using the superhelical sym-
metry option of JUMNA with a 10 bp repeat, a radius
of curvature of 42 Å and a pitch of 24 Å taken from
crystallographic data.58 We have thus ignored the fine
details of histone-induced DNA deformation, which
may themselves be dependent on the sequence used
crystallographically, and are also probably insuffi-
ciently resolved for direct use in molecular modeling.
Lastly, DNA–protein interaction energies have not
been taken into account since our simplified model is
not compatible with the precise placement of amino
acid side chains from the crystallographic data.

The target sequence of 146 bp was tested against a
standard B-DNA reference conformation on a 860 bp

sequence of the 5SRNA gene of Xenopus borealis for
which preferential nucleosome binding positions have
been determined experimentally using nuclease diges-
tion.121 The results obtained [Figure 6(a)] show two
striking features. First, there is a clear 10 bp frequency
oscillation in the deformation energy all along the
sequence. This oscillation reflects the 10 bp helical
symmetry repeat imposed on our target conformation.
It implies that whatever the sequence being scanned,
a 146 bp fragment of the sequence will always have a
preferential direction of curvature. As the ADAPT
sampling window moves along the sequence, this
direction will be satisfied at some point i. Ten base
pairs further along the sequence at i , 10, this
direction will again be satisfied since a 10 bp move
corresponds to a full rotation of the DNA double helix
around its superhelical axis. However, at i , 5 the
direction of curvature will be exactly opposed to the
preferential direction, leading to a higher deformation
energy.

The second notable feature is an amplitude modu-
lation of the basic 10 bp oscillation of the deformation
energy. This amplitude modulation leads to roughly
sinusoidal envelopes, which cover about 150–200 bp.
In several cases these envelopes seem to have some
relationship to nucleosome binding locations within
the X. borealis sequence [shown by the vertical
dashed lines in Figure 5(a)]. If we contrast these
results with those obtained by scanning a random
sequence, with the same AT/GC content as that of X.
borealis, it is seen that the 10 bp oscillation is always

Table IV Consensus Sequences of the Described TATA Boxes Using the vs1000 Set of Sequences with DNAAlone,
DNAAA, or for the Combination of the Two Targetsa

["50:,1] ["200:,100]

plim 0%

DNAAlone Y A T A W A A A T A T A W A W R
DNAAA T A T A W A D R T A T A A A W G
Total T A T A A A A R T A T A W A W R

plim 10%

DNAAlone Y W T W W A A A T A T A W A W R
DNAAA T A T A W W D R T A T W W A D R
Total T A T A W A W R T A T A A A W R

plim 15%

DNAAlone Y Y T W T A A A Y H T H W W W R
DNAAA T A T A H D K G T A Y Y M Y D R
Total T A T A A A A G T A T W W W W R

a At each position of the motif, the base (or combination of bases) whose occurrence is higher than 60% is represented.
Note: K # G/T; M # A/C; R # A/G; W # A/T; Y # C/T; H # A/C/T; V # A/C/G; D # A/G/T.
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FIGURE 6 Probing genomic sequences with the deformation induced by the nucleosome forma-
tion. Deformation energy is plotted in function of the position in the analyzed sequence. (a) Xenopus
borealis 5SRNA sequence (experimentally determined positions are indicated by vertical dashed
lines); (b) random sequence.
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present, but the amplitude modulation is much less
structured, see Figure 6(b). It is too early to give a
definitive explanation of the better defined envelopes
seen for the biologically relevant sequence. Several
improvements can be made to our nucleosome model
by taking into account deviations from perfect super-
helical symmetry and by including partial or complete
DNA–protein interaction energies in the scanning.
However, the results obtained suggest that there in-
deed seems to be a link between deformation energy
and preferential nucleosome positioning.

CONCLUSIONS

The base sequence of DNA leads to variations in
structure and flexibility that are now known to play a
significant role in many biological functions via their
contribution to protein–DNA recognition processes. It
is, however, difficult to predict such sequence-depen-
dent variations directly, and in general, there is insuf-
ficient experimental data to be able to formulate mod-
els that apply to more than one type of deformation or
go beyond di- or trinucleotide parameter sets. Al-
though molecular simulations can now be used to
obtain both structural and dynamic information on
short DNA fragments, they are also limited by the
computational effort involved.

In this article, we have described an original ap-
proach, termed ADAPT, which is aimed at determin-
ing the physical properties of given base pair se-
quences within DNA and is sufficiently rapid to be
applied to the analysis of complete genomes. ADAPT
is based on making the base sequence of DNA a
variable, via a multicopy approach. This involves
introducing special nucleotides (“lexides”) into the
JUMNA internal/helicoidal molecular modeling pro-
gram. These lexides contain all four standard bases,
whose contribution to the conformational energy is
controlled by variable coefficients. Using energy ma-
trices taken from such calculations, it is then possible
to compare the energies of a reference and a target
conformation as a function of their common base
sequence. ADAPT enables sequences to be tested
using energy minimization, complete combinatorial
searching or sequence scanning, in a manner analo-
gous to the protein threading approach used in protein
structure prediction.

We have presented applications of ADAPT to a
number of examples involving DNA allomorphic
transitions, DNA deformations and protein–DNA
binding. In each case it has been shown that ADAPT
is able to translate base sequences into physical prop-
erties that show a good correlation with available

experimental data. Importantly, because of the multi-
copy approach, ADAPT calculations are very much
faster than the equivalent molecular mechanics calcu-
lations, by a factor that in some cases can exceed 109.
This also means that specific physical properties of
genomic sequences can be scanned at a rate of
roughly 2000 bp per second.

ADAPT allows the detection of conserved DNA
features that are not directly visible from the se-
quence. It can be used alone, but it could be profitably
combined with other DNA sequence analysis meth-
ods. Moreover, as nucleosome positioning can play a
role in gene regulation,67–69 it could be interesting to
take into account the data coming from our studies of
histone core deformation energy when considering the
TBP target analysis of promoter regions.51,75,122,123

Such combined approaches could be one step in the
direction of a more integrated description of genomic
information.

ADAPT can equally be extended to problems in-
volving structural flexibility, which is also an impor-
tant factor for DNA function.124 It can be coupled
with more sophisticated force fields, molecular repre-
sentations, and solvent models than those used in the
present tests. As such, it will hopefully prove to be a
useful and complementary tool to standard lexical
analyses of genome sequences.
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