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Abstract

Motivation: The detection of structural variations (SVs) in short-range Paired-End (PE) libraries

remains challenging because SV breakpoints can involve large dispersed repeated sequences,

or carry inherent complexity, hardly resolvable with classical PE sequencing data. In contrast, large

insert-size sequencing libraries (Mate-Pair libraries) provide higher physical coverage of the gen-

ome and give access to repeat-containing regions. They can thus theoretically overcome previous

limitations as they are becoming routinely accessible. Nevertheless, broad insert size distributions

and high rates of chimerical sequences are usually associated to this type of libraries, which makes

the accurate annotation of SV challenging.

Results: Here, we present Ulysses, a tool that achieves drastically higher detection accuracy than

existing tools, both on simulated and real mate-pair sequencing datasets from the 1000 Human

Genome project. Ulysses achieves high specificity over the complete spectrum of variants by as-

sessing, in a principled manner, the statistical significance of each possible variant (duplications,

deletions, translocations, insertions and inversions) against an explicit model for the generation

of experimental noise. This statistical model proves particularly useful for the detection of low fre-

quency variants. SV detection performed on a large insert Mate-Pair library from a breast cancer

sample revealed a high level of somatic duplications in the tumor and, to a lesser extent, in

the blood sample as well. Altogether, these results show that Ulysses is a valuable tool for the char-

acterization of somatic mosaicism in human tissues and in cancer genomes.

Availability and implementation: Ulysses is available at http://www.lcqb.upmc.fr/ulysses.

Contact: ingrid.lafontaine@upmc.fr or gilles.fischer@upmc.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Our current understanding of the structural and functional impact

of SV onto the biology of genomes has largely benefited from the de-

velopment of the second generation of DNA sequencing technolo-

gies. The computational detection of SV has mainly relied on the

development of four methodological strategies, the ‘read-depth’

method (Campbell et al., 2008; Alkan et al., 2009; Chiang et al.,

2009; Yoon et al., 2009; Mills et al., 2011), the ‘split-read’ method

(Lam et al., 2010; Zhang et al., 2011; Jiang et al., 2012), the de

novo genome assembly (Wang et al., 2011) and the ‘Paired-End’

method [PEM (Chen et al., 2009; Korbel et al., 2009; Lee et al.,

2009; Hormozdiari et al., 2010; Quinlan et al., 2010; Zeitouni
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et al., 2010; Qi and Zhao, 2011; Marschall et al., 2012; Sindi et al.,

2012; Hart et al., 2013)]. Some detection tools have increased SV

detection specificity and breakpoint resolution by combining several

of these detection strategies (Ye et al., 2009; Medvedev et al., 2010;

Abyzov and Gerstein, 2011; Handsaker et al., 2011; Rausch et al.,

2012; Yang et al., 2013).

Computational analyses using these approaches demonstrated

that large SV are major contributors to the genomic polymorphism

between individuals (Conrad and Hurles, 2007; Korbel et al., 2007;

Kidd et al., 2008; Mills et al., 2011). Polymorphic SV were shown

to contribute to both common diseases and rare genomic disorders

and to alter normal gene function during cancer development

(Fanciulli et al., 2007; Hollox et al., 2008; Stephens et al., 2009;

Pinto et al., 2010; Girirajan et al., 2011). New approaches

have also started to reveal the quantitative importance of somatic

SV in healthy tissues such as neuron or blood cells (Singer

et al., 2010; Laurie et al., 2012; McConnell et al., 2013; Voet et al.,

2013).

However, the true level of somatic mosaicism probably remains

underestimated, owing to the limitations inherent in classical short-

range PE libraries. More SV are now theoretically accessible thanks

to the recent development of long-range Mate Pair (MP) libraries in

which the two reads can be separated by several kilobases. MP libra-

ries present major advantages over classical PE libraries because

large inserts can span over large repeated regions often involved in

SV formation and because MP libraries provide, for the same num-

ber of reads, a much higher physical coverage of the genome. Higher

physical coverage triggers the possibility of uncovering SV that are

present at low frequency in mosaic genomes. However, MP libraries

involve a ligation step during the library construction which gener-

ates a large amount of chimerical Read Pairs (RPs), making those li-

brary prone to higher rates of false-positive SV. In addition, MP

libraries suffer from wide insert size (IS) distributions, which bring

additional noise to the detection of deletion and insertion events.

These limitations explain why currently available SV detection tools

that were developed for short-range PE libraries perform badly on

MP data.

Here, we report a new PEM-based software, called Ulysses, spe-

cifically designed to detect SV in MP datasets. Ulysses comprises a

SV scoring module, which improves SV detection accuracy in MP

libraries. Our algorithm can annotate the full spectrum of SV,

including deletions (DEL), segmental duplications (DUP), inversions

(INV), small insertions (sINS, with a size smaller than the library

IS), large insertions (INS), reciprocal translocations (RTs) and

non-reciprocal translocations (NRT). Benchmarks on real MP

sequencing datasets from the 1000 Human Genome project, on MP

simulated datasets as well as on a breast cancer tumor MP library

showed that Ulysses outperforms three commonly used detection

tools [Breakdancer (Chen et al., 2009), GASVpro (Sindi et al., 2012)

and Delly (Rausch et al., 2012)] for all types of SV and notably for

low frequency structural variants in MP libraries. In addition,

Ulysses is on par with or outperforms the three other tools on PE

datasets, making it a highly versatile detection tool.

2 Methods

2.1 Overview of Ulysses
Ulysses is a PEM-based algorithm, which comprises two independ-

ent parts: library parsing (Steps 1–2) and SV detection (Steps 3–5,

Fig. 1A). The algorithm automatically tunes parameters for SV

detection from the set of statistical properties derived from the

library parsing. Then, Ulysses builds simple undirected graphs

describing groups of discordant RP that consistently support the ex-

istence of the same structural variation (SV). The problem of using

cliques to predict SV has already been exactly solved and largely im-

plemented in the past few years (Lee et al., 2008; Hormozdiari

et al., 2009; Sindi et al., 2009). Cliques are defined in Ulysses in a

way closer to (Rausch et al., 2012). However, because a parameter

ensures that all IS within a clique are in a comparable size range

(IScn, see below), Ulysses adds new constraints on cliques. Note that

our clustering rules only reflect our implementation rather than an

exact solution to the problem of cliques identification. Finally,

Ulysses assesses the statistical significance of each candidate variant

in a principled manner using for each type of SV an explicit model

for the generation of chimerical RP (Fig. 1A). The five main steps

are detailed below and further details can be found in the

Supplementary Material.

2.1.1 Step 1—Statistics of the library and detection parameters

Starting from a library alignment file (BAM format), Ulysses derives

summary statistics [read-pair orientation, empirical IS distribution

(fl), IS median (l) and median absolute deviation (r)] from 1 million

of randomly sampled RP. The median and median absolute devi-

ation estimates were preferred over mean and standard deviation

as they are more robust to outliers. These values are used to set SV

detection parameters described below (dn, IScn, pdn=‘k ðsÞ and pIS,

Fig. 1B).

Two descriptors, d and ISc, are defined to assess whether two RP

are consistent (Fig. 1B). Given two RP of size IS1 and IS2, spanning

the genomic intervals ½l1; r1� and ½l2; r2�, respectively, we consider:

– their maximal interdistance: d ¼ max ðjl1 � l2j; jr1 � r2jÞ,
– their IS difference: ISc ¼ jIS1 � IS2j.

Two RP are consistent if they satisfy d�lþ nr and ISc�nr (note

that ISc only applies to intra-chromosomal RP). For further refer-

ence, we will name those thresholds dn and IScn (see Section 2.5).

In addition, two probabilities, pdn=‘k ðsÞ and pIS, are defined to assess

the statistical significance of groups of consistent RP (Fig. 1B):

– pdn=‘k ðsÞ the probability that s RP have consistent positions in a

chromosome of length ‘k,

– pISðsÞ the probability that s RP have consistent IS.

Details about the computation of both probabilities are given

in Supplementary Material.

2.1.2 Step 2—Selection of discordant RP

To define SV, Ulysses relies on the identification of discordant RP

(with mapping quality �20), i.e. RP that map incongruously onto

the reference genome (Fig. 1C). RP are considered as discordant

when they fulfill at least one of the three following criteria:

– Incongruous RP orientation: any RP not in a [�,þ] orientation

(throughout the text, read orientations are given for MP and must

be reversed for PE libraries).

– IS deviating from the expected range: any RP with an IS outside

the range ½l� nr; lþ nr�.
– Incongruous read location: any RP with the two reads on two dif-

ferent chromosomes.

At the end of the library parsing part (Steps 1 and 2), a set of

alignment files containing all identified discordant RP is produced

(Fig. 1A). The following SV detection part (Steps 3–5) is independ-

ent and can be run separately.

2 A.Gillet-Markowska et al.
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2.1.3 Step 3—Calculation of SV coverage minimal threshold

The minimal number s of consistent RP that is required to support

each type of SV is set in order to limit the expected number of candi-

date SV (NSV). This is especially justified when libraries have a wide

distribution of ISs and/or a high number of chimerical reads that

will generate a high number of false positives (FPs) (as it is often the

case with MP libraries).

For each type of SV, if pSV is the probability that x discordant

RP are consistent, the number of expected candidate SV supported

by x RP is NSV ¼ DRP
x

� �
� pSV with DRP being the total number of

Fig. 1. Ulysses design. (A) Flowchart of the Ulysses algorithm indicating all five processing steps (grey) and output files (light purple). The program is composed

of two independent parts, the library parsing and the SV detection, comprising two and three steps, respectively. The five steps are detailed in Section 3

(Overview of Ulysses). (B) Consistency parameters. Distribution of IS (top left) and schematic representation of two overlapping RP (purple arrows, top right)

allow defining the interdistance and the IS difference parameters, thresholds and probabilities of having s discordant RP (see Supplementary Material). IScn is

a threshold only applicable to intra-chromosomal RP. (C) SV detection characteristics. For each type of SV, the description of discordant RP, including their top-

ology (left panel), properties (middle panel) and probabilities (right panel) is detailed. Mapping read orientations are intended for MP libraries [�,þ] and should

be reversed for PE libraries. The pSV formula gives the probability for s discordant RP to be consistent (see the paragraph ‘Overview of Ulysses’). k and l are two

different chromosomes of sizes ‘k and ‘l . Note that pSV can be directly expressed as a product between pdn=‘k
ðs) and pISðs) because the same value of n is used for

both dn and IScn and therefore there are only two degrees of freedom to fully define the three parameters jl1 � l2j; jr1 � r2j and jIS1 � IS2j

Ulysses 3
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discordant RP of this type. The probability pSV depends on the top-

ology of the SV and can be explicitly formalized using the probabil-

ities pdn=‘k ðsÞ and pISðsÞ defined above (Fig. 1C). In practice, NSV

is limited to be at most 10 000. The value of s (default s ¼ 2) is

automatically increased while NSV is above this limit.

2.1.4 Step 4—SV detection

Discordant RP are categorized into one of the seven SV types

reported in Figure 1C. RP are then sorted by chromosomes and

coordinates, and used to build a simple undirected graph. Each dis-

cordant RP represents one vertex of the graph and one edge is drawn

between each pair of consistent RP. Ulysses defines a SV as a max-

imal clique in the graph where all consistent RP are connected to

each others. Note that the same vertex can belong to two or more

different maximal cliques (meaning that a given RP can be used to

define different SV).

DEL, sINS and DUP are SV that produce a single new DNA

junction in the rearranged chromosome when compared with the

reference genome. For those single-junction SV, we directly use the

corresponding maximal cliques to identify candidates SV. Each

INV, INS or RT produces two new DNA junctions when compared

with the reference genome. These two-junction SV are consequently

detected by two maximal cliques, which, in Ulysses, need to be inter-

connected (by RP orientation and relative coordinates, Fig. 1C and

Supplementary Material). This requirement increases the specificity

of the detection in comparison with methods that consider only one

junction, even for the detection of two-junction SV. All combin-

ations of compatible pairs of cliques are conserved, thus allowing

the same RP to be re-used in several different pairs. In addition,

when the position of the centromeres is provided, the relative orien-

tation of the two cliques is checked and an RT event will be reported

only when both of the rearranged molecules contain a single centro-

mere. Otherwise, the corresponding SV is classified as an INS.

For both INS and RT, the number of RP must be equally distributed

between the two cliques (ratio>0.1). Otherwise, the corresponding

SV is classified as a NRT.

2.1.5 Step 5—SV scoring and selection of statistically significant SV

Ulysses evaluates whether the number m of RP that supports each

candidate variation is significant. This step is essential to filter

out false-positive predictions from the artefacts in the library. The

significance level of each candidate is then corrected by controlling

the false-discovery rate (FDR).

Deletions and small insertions: The statistical significance of

each candidate deletion is estimated by calculating the probability

bm to randomly sample at least m RP identifying this deletion, given

the local physical coverage C. Given the smallest RP describing

the deletion with an IS s, each RP drawn from the IS distribution

has a probability propIS to be consistent with the smallest RP

(propIS ¼
P

l�s fl, see Supplementary Material). The probability bm

will result from the binomial sampling of the RP:

bm ¼
X
i�m

C
i

� �
propi

IS � ð1� propISÞ
C�i:

In practice, C is estimated over the region corresponding to

the DEL position (considering at most the 10 first kilobases of the

deleted region). The significance of small insertions can be evaluated

in the same manner, by flipping around the IS distribution.

Segmental duplications, non-reciprocal translocations and two-

junction SV: For those SV, the statistical significance is computed

with a binomial distribution as being the probability �m that at least

m RP among all combinations of discordant RP of each type are

consistent, given the probability pSV (see Fig. 1A):

�m ¼
X
i�m

Cm

i

� �
pi

SV � ð1� pSVÞCm�i;

where Cm ¼ DRP
m

� �
is the number of ways of having m RP among

a total of DRP discordant ones on the SV considered (see Step 3 and

Fig. 1C).

�m is calculated for each chromosome independently (or each

pair of chromosomes for inter-chromosomal rearrangements).

After SV scoring, we set up a P-value cut-off by controlling the

FDR (default value 0.01). Q-values are estimated using a bootstrap

method (Storey et al., 2004). During our tests with experimental

and simulated data, this approach greatly improved the specificity

of the detection (see Section 3).

2.2 Sequencing datasets
The details and the accession numbers for all real sequencing

datasets used in this study (NA12878 and breast cancer BT71) are

provided in Supplementary Methods.

For simulated sequencing datasets, a MP (l ¼ 2000 bp;

r ¼ 1487 bp, normal distribution, read-length ¼ 50 bp) and a PE

(l ¼ 233 bp; r ¼ 10 bp, normal distribution, read-length ¼ 50 bp)

Illumina-like datasets were generated with wgsim 0.3.1–r13

(Li et al., 2009) with default parameters using a 162 Mb human

genomic region as a reference (GRCh37/hg19 chromosomes 20, 21

and 22) at three different levels of coverage (10�, 30� and 60�).

The MP dataset was generated with variable proportions of random

chimerical RP (0.1%, 1%, 2.5% and 5%) in order to sample differ-

ent levels of experimental artefacts that can derive from the circular-

ization step during MP library construction. Chimerical RP were

generated by randomly sampling the RP and by shuffling the mates.

As a consequence, chimerical RP can have any orientations and

be either intra or inter-chromosomal. The simulated reads were

remapped on the reference genome using BWA aln 0.7.3a–r367 with

default parameters (Li et al., 2009). Artificial SV were then added to

both PE and MP simulated library datasets after the remapping step

in order to avoid mapping artefacts that could bias SV detection.

Artificial SV were designed with variable numbers of discordant RP

(with 4 and 8 RP in the 10� dataset; with 4, 8, 16 and 32 RP in the

30� dataset and with 4, 8, 16, 32 and 64 RP in the 60� dataset).

These numbers correspond to a relative coverage varying from 0.06

(4 RP in the 60� library dataset: 4/(60þ4)¼0.06) up to 0.52

(64 RP in 60� dataset: 64/(60þ64)¼0.52). Each set of artificial SV

comprises 50 SV of each type (DUP, DEL, INV, INS, RT and NRT)

for each relative coverage, generating a total of 600, 1200 and 1500

SV for 10�, 30� and 60� datasets, respectively. DUP, DEL and

INV were generated with random sizes, varying from 1 to 50 kb.

The detection of one SV was considered as true positive (TP) when

at least one of the RP that defined the simulated SV was recovered.

All simulated datasets are available at http://www.lcqb.upmc.fr/

ulysses/simulations.

2.3 Benchmark with other detection tools
All benchmarks analyses were performed using the AMADEA

Biopack platform developed by ISoft (http://www.isoft.fr/bio/bio-

pack_en.htm). Breakdancer v1.2.6 (Chen et al., 2009), GASVpro-

HQ v1.2 (Sindi et al., 2012) (referred to as GASVpro) and Delly

v0.5.6 (Rausch et al., 2012) were configured to detect SV defined

by at least two consistent RP (which is the lowest limit to define a

4 A.Gillet-Markowska et al.
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clique). All other parameters remained set by default. The sensitivity

(Sn) of a detection tool is the proportion of true SV that are detected

([TPs]/[TPsþ false negatives]) and its precision (or positive predict-

ive value, PPV) is the proportion of true SV among all detected SV

([TPs]/[TPsþFPs]). The F1-score is an estimator of the trade-off

between Sn and PPV (2� Sn�PPV/(SnþPPV)). Supplementary

Tables S1, S2 and S3 report Sn, PPV, F1-scores and running times of

Ulysses, Delly, Breakdancer and GASVpro on all simulated datasets.

Note that GASVpro cannot perform SV detection for MP data-

sets (both simulated and experimental). The execution of GASVpro

on these data was stopped after more than 166 h of computation

on a single CPU after splitting the sequence files by chromosomes

(core i7 870, 32GB RAM). As a consequence, GASVpro does not

appear in any of the MP analyses.

2.4 Ulysses detection parameter n
The performance of Ulysses was tested as a function of the n value,

which controls the main detection parameters for all types of SV

(the interdistance dn and IS difference IScn, see Section 3). For both

MP and PE simulated datasets, F1-scores remain highly stable for n

values ranging from 3 to 10 (Supplementary Fig. S1). For real

sequencing dataset (NA12878 MP 30�), a n value set to 6 provides

a good compromise between Sn and PPV (Supplementary Fig. S2).

This value of n¼6, set by default in the parameter file, is therefore

well suited for most applications and does not require any manual

adjustment by the user.

3 Results

3.1 Performance of Ulysses on MP sequencing datasets
The performance of Ulysses was compared with three other widely

used SV detection tools: Breakdancer, GASVpro and Delly. Given

that BreakDancer and Delly do not discriminate between INS, RT

and NRT, these three types of SV were merged into a single class

of events called inter-chromosomal (INTER) for analysis. The per-

formance of each method was estimated with PPV, representing the

total number of TPs divided by the total number of detected SV.

3.1.1 Performance on real sequencing data from the 1000 Human

Genome Project

The three tools were benchmarked on a real MP sequencing dataset

(30� coverage) coming from a single individual (NA12878, see

Section 2). We focused on DEL detection because a robust GS

containing 2209 DEL was available (see Section 2). Results are pre-

sented only for Ulysses, Delly and BreakDancer (SV detection could

not finish in reasonable time with GASVpro on MP datasets, even

with sequences split by chromosome, see Section 2).

The results on Figure 2A are presented as ROC curve showing

the number of TPs DEL as a function of the total number of pre-

dicted DEL (TPþFP). The main interest of our approach lies in

the scoring method that allows to filter out a large number of FP

cliques that directly result from chimerical RP. The scoring module

filters out 99.88% of the 166 057 (167 335�1278) FP detected.

It also filters out 86.31% of the 1278 TP, keeping as statistically

significant 175 TP after filtering. Note that the final sensitivity

of Ulysses after the scoring step (175 TP) is very close to that

of BreakDancer (197 TP) and higher than that of Delly (48 TP).

As a result, the scoring method strongly increases Ulysses PPV from

0.76% to 45% (a 59-fold increase), which explains the massive

gain in specificity of Ulysses over the other tools (Fig. 2A,

Supplementary Table S1).

We have checked that the higher detection accuracy of Ulysses

did not result from a biased distribution of DEL sizes in the GS that

could have favoured Ulysses over the other tools. The median dele-

tion size of DEL from the GS is 4.9 kb, whereas the median deletion

sizes of DEL detected by Ulysses, Delly and Breakdancer are of 13.2,

21.5 and 5.5 kb, respectively. Thus, Ulysses and Delly do not detect

small DEL from the GS. BreakDancer is able to predict such small

DEL at the cost of precision, with the concomitant detection of

about 21 000 FPs.

In order to further characterize Ulysses higher detection accur-

acy, we plotted the relative precision (proportion of TP DEL or

PPV) and the FDR (proportion of FP DEL) of the three tools as a

function of DEL physical coverage (Fig. 2B). This plot shows

that Ulysses precision remains relatively constant (between 0.24 and

0.57) over the whole range of coverages whereas BreakDancer preci-

sion increases with increasing coverage (from 0.0024 to 0.54).

Delly achieves correct precision only for intermediate coverage val-

ues. Compared with the other tools, Ulysses precision is particularly

higher for the lowest physical coverage values (between 1 and

20 RP). These results show that Ulysses is particularly efficient for

the detection of low frequency SV.

3.1.2 Detection of somatic mosaicism in tumour sample

We used 8 kb MP data from a luminal A breast tumor to analyse

the somatic mosaicism present in cancer cells (data taken from

Inaki et al. (2014)). In this paper, the authors suggest that tandem

duplications appear to be early events in tumour evolution, espe-

cially in the genesis of amplicons. We performed the differential de-

tection of tandem DUP in the blood and the tumour samples with

Ulysses and Delly (Supplementary Fig. S4). Nearly all DUP detected

in the blood sample with allele frequencies higher than 0.2 were also

found in the tumour, as expected for germline SV. Note that Uysses

detected 49 germline DUP whereas Delly only found 5 such DUP.

We found nearly no evidence of high allele frequency (AF >0.2)

somatic DUP in the blood sample whereas in the tumor sample, we

detected a significant number of somatic DUP that probably occur

early during tumour development as suggested by their AF higher

than 0.2 (28 with Ulysses versus 3 with Delly, Supplementary Fig.

S4A and B, respectively). The highest level of somatic mosaicism

was found by Ulysses as low frequency DUP (AF <0.2) in the

tumour sample. Ulysses detected 4551 low frequency DUP whereas

Delly found only 256 such DUP (Supplementary Fig. 4A and B,

respectively). In this analysis, somatic mosaicism was also detected

in the blood sample, as already reported (Jacobs et al., 2012; Laurie

et al., 2012), but to a lesser extent than in the tumour sample

(Supplementary Fig. S4).

3.1.3 Performance on simulated SV

A MP sequencing dataset with wide IS distributions (l ¼ 2 kb;

r ¼ 1487 bp) was simulated at different sequencing coverage

values (10�, 30� and 60�, see Section 2), using three human

chromosomes as reference. Fifty simulated SV of each type (DUP,

DEL, INV, INS, RT and NRT) were added to the libraries at

relative physical coverages varying from 0.06 up to 0.52. Intra-

chromosomal SVs (DUP, DEL and INV) were generated with ran-

dom sizes, varying from 1 kb to 50 kb. Note that simulated SV repre-

sent the TP SV in this dataset. In addition, variable proportions of

random chimerical RP (from 0.1% to 5% of the reads) were added

to the library in order to simulate the typical experimental noise

that derives from the circularization step during MP library

construction.
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No major difference was found across the range of sequencing

coverage values. Therefore, the results, presented on Figure 3, only

focus on the 60� coverage dataset (see Supplementary Figs. S5–S9

and Supplementary Tables S2 for 10� and 30� results). We first

assessed the performance of the three algorithms across variable

SV physical coverage values (Fig. 3A). For SV present at high rela-

tive coverage (0.52, corresponding to a heterozygous SV in a dip-

loid cell), all three algorithms perform globally well, with similar

accuracy as estimated by the F1-scores. However, as soon as the

SV relative coverage decreases, the performance of Delly and

BreakDancer rapidly deteriorates (Fig. 3A). At the lowest SV relative

coverage (0.06), Ulysses retains a detection accuracy of 71%

whereas Delly and BreakDancer drop down to 11% and 2%,

respectively. We found that detection accuracy of Delly and

BreakDancer deteriorates because of high over-prediction of FP

SV (see ROC curves in Supplementary Figs. S5–S9). These results

show that Ulysses is the only algorithm able to detect low frequency

SV (i.e. physical coverage between 0.06 and 0.34) with high

accuracy.

Next, we compared the three tools for each type of SV, across all

physical coverage values. Again, for the highest relative coverage

(0.52), all tools achieve comparable accuracies on all types of SV

(Supplementary Fig. S10). For all SV types, the performance

of Ulysses compared with the other tools gradually improves with

decreasing relative coverage. For the lowest relative coverage value,

Ulysses outperforms both Delly and BreakDancer for all types of SV

(Fig. 3B left panel).

Because MP libraries often comprise high proportions of chimer-

ical RP, we also tested whether the conclusions drawn here for a

dataset containing 1% of chimerical RP also apply to datasets with

other levels of chimeras (between 0.1% and 5%). Again, for the

lowest SV coverage value (0.06), Ulysses shows the highest F1-scores

over the entire range of chimera (Fig. 3B right panel). For relative

coverage values from 0.12 to 0.34, the difference between the tools

gradually reduces and totally vanishes for the highest coverage

(0.52, Supplementary Fig. S10).

3.2 Performance on PE libraries
We also tested Ulysses performance on classical PE libraries,

with smaller ISs, and compared it with Delly, BreakDancer and

GASVpro. For real sequencing dataset (NA12878), Ulysses and

BreakDancer achieve the best detection accuracies at low coverage

(5�). For a high coverage 200� dataset, Ulysses clearly outperforms

all tools (Supplementary Fig. S11A). Noticeably, GASVpro, which

also includes a SV scoring and filtering module, performs very

Without filter With filter
A B

Fig. 2. Deletions in the NA12878 MP 30X dataset. (A) Left and middle panels: ROC-like curves representing the number of TP DEL, without and with statistical filter

(see Gold Standard in Section 2) as a function of the total number of predictions (TPsþ FPs) using the relative SV coverage as a cumulative varying threshold.

GASVpro could not be run for the MP library (see text). Right panel: detection accuracy with filter represented as PPV. (B) Relative precision (proportion of true-

positive DEL) and FDR (proportion of false-positive DEL) of the three tools as a function of DEL physical coverage in MP30X NA12878 dataset. Blueviolet,

red and dark green bars represent the precision (PPV) of Ulysses, Delly and Breakdancer, respectively. Grey bars represent the proportion of false-positive DEL

(FDR, 1-PPV)

A B

Fig. 3. Results on a 60X MP dataset with RP distribution l¼ 2 kb, r¼1487 bp and 1% of chimerical RP. (A) F1-score as a function of SV relative coverage. Note that

GASVpro is absent from the MP simulations because the execution of the program on this dataset exceeded 166 h of computation (see Supplementary Table S2).

(B) Left panel: F1-score for the different types of SV with a relative coverage of 0.06. The INTER class of SV gathers results from INS, RT and NRT. Right panel:

F1-score value are represented as a function of the proportion of chimerical RP present in the dataset (SV relative coverage¼0.06)
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poorly on low coverage data but reached the second best PPV on

the high coverage data. For simulated dataset, RP were generated

with characteristics similar to those described above for MP data

(in terms of sequencing coverage, SV type and physical coverage,

see Section 2). Both Ulysses and BreakDancer behave well at all

SV relative coverages and across all types of SV whereas Delly

and GASVpro show lower F1-scores for low frequency DEL

(Supplementary Fig. S11B).

4 Discussion

Ulysses uses a PEM approach that relies on the identification of

groups of discordant RP to detect the full spectrum of SV. This strat-

egy, also implemented in the three other detection tools tested here,

is highly sensitive but usually lacks specificity when used alone on

MP data with wide IS distribution and high proportion of chimerical

RP. To overcome these limitations, we developed in Ulysses a scor-

ing module that statistically assesses the genuineness of all candi-

dates SV, given an explicit model for the generation of chimerical

RP. To deal with wide IS distribution, Ulysses evaluates IS consist-

ency between RP and filters out groups of RP with inconsistent IS.

To deal with high proportions of chimerical RP (up to 5%), Ulysses

uses statistics based on the relative coverage of candidate SV. These

two parameters automatically adjust to the characteristics of the

library such that no manual tuning is required to achieve detection

with good accuracy across all types of SV. As a result, Ulysses is the

only tool that performs equally well on MP and PE data. On a real

MP sequencing dataset from the 1000 Human Genome Project

(NA12878, 30�), Ulysses achieves a better sensitivity than the other

tools and by several orders of magnitude the best precision. Ulysses

also achieves the highest detection accuracy on PE datasets, showing

that globally, Ulysses outperforms the other tools no matter the type

of sequencing library.

Ulysses scoring module brings a major benefit by enabling accur-

ate detection of low coverage variants. Low coverage SV can corres-

pond to rearrangements occurring in genomic regions which are

difficult to sequence and where the local coverage could dramatic-

ally drop (some regions were shown to be consistently prone to low

coverage). Alternatively, low coverage SV could also result from

rearrangements only present in a small subset of the cell population.

This is of particular interest when analyzing samples that contain

polymorphic somatic mutations such as cancer samples. The ana-

lysis of somatic mosaicism in a breast tumour sample revealed that

Ulysses achieves an efficient detection of both germline and somatic

DUP. We also showed that Ulysses is able to detect somatic mosai-

cism in a blood sample. Furthermore, recent insights onto somatic

mosaicism showed that subclonal cell heterogeneity is not restricted

to cancer cells and could be common between cells from a single

tissue sample. Given such an unsuspected level of somatic genome

plasticity, the availability of a SV detection tool like Ulysses, with

high accuracy for rare SV is of primary importance.
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