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Summary

We performed a systematic investigation of the quantitative relationship between genome copy number,

transcription, transcript abundance and synthesis of photosynthetic proteins in the chloroplast of the

green algae Chlamydomonas reinhardtii grown either in mixotrophic or phototrophic conditions. The

chloroplast gene copy number is lower in the latter condition and the half-life and accumulation levels of

most chloroplast transcripts are signi®cantly reduced, although the relative rates of protein synthesis

remain similar. Our study shows that, in most instances, chloroplast protein synthesis is poorly sensitive

to changes in gene copy number or transcript abundance in the chloroplast. Treatment with 5-¯uoro-2¢-
deoxyuridine, that inhibits chloroplast DNA replication and decreases extensively the number of copies

of the chloroplast genome, had limited effects on the abundance of most chloroplast transcripts and

little if any effect on the rates of protein synthesis. When using rifampicin, that selectively inhibits

chloroplast transcription, we found no direct correlation between the level of transcripts remaining in

the chloroplast and the rates of chloroplast protein synthesis. For two chloroplast genes, a 90% decrease

in the amount of transcript did not cause a drop in the rate of synthesis of the corresponding protein

product. Overall, our results demonstrate that there is no gene dosage effect in the chloroplast and that

transcript abundance is not limiting in the expression of chloroplast-encoded protein.
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Introduction

Transcriptional regulation of gene expression is widespread

in the prokaryote kingdom, mainly because translation

essentially occurs co-transcriptionally. As chloroplasts

derive from ancestral cyanobacteria, but have evolved as

endosymbiotic organelles, it is of interest to investigate the

different regulatory mechanisms that underlie the expres-

sion of the chloroplast genome. In higher plants, it has been

shown that regulation of chloroplast transcription is import-

ant with respect to the response of chloroplast gene

expression to light changes and in the various developmen-

tal phases leading from proplastids to differentiated

chloroplasts (Allison, 2000; Kuhlemeier, 1992; Mullet, 1993;

Stern et al., 1997). In C. reinhardtii, transcriptional activity of

chloroplast genes is modulated by a circadian rhythm, and

may to some extent be under nuclear control (Kawazoe

et al., 2000; Leu et al., 1990). However, there is now over-

whelming evidence for the predominance of post-transcrip-

tional control in chloroplast gene expression that

encompasses transcript maturation, stabilization and/or

translational activation, these steps being controlled by

general Ð as well as by target-speci®c Ð nucleus-encoded

factors (for recent reviews see Barkan and Goldschmidt-

Clermont, 2000; Hauser et al., 1998; Rochaix, 2001; Stern and

Drager, 1998; Wollman et al., 1999; Zerges, 2000). Taken

together, the studies on chloroplast gene expression have

not yet de®ned the extent to which rates of transcription and

transcript abundance actually control protein synthesis in

the chloroplast. Furthermore, the possible in¯uence of
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carbon metabolism on the expression of the chloroplast

genome has not yet been systematically investigated.

The organelle genome is highly polyploid. When the

unicellular green alga C. reinhardtii is grown heterotrophi-

cally, the unique chloroplast contains about 80 copies of a

circular chromosome (Lau et al., 2000; Rochaix, 1995),

whereas in higher plants, a single plastid contains from 20

to 300 genome copies (Mullet, 1993; for a review see

Sugiura, 1995). In addition, a single plant cell can accom-

modate up to 100 plastids. Thus, there is an important

unbalance in gene copy number between the highly

polyploid chloroplasts and the nucleus of a plant cell.

This raises intriguing questions about gene dosage for

protein expression in the chloroplast, given the compos-

ition of the major chloroplast protein complexes, whose

nuclear and chloroplast-encoded subunits are present, in

most cases, in a 1±1 stoichiometry. In this study we

examined the relation between chloroplast genome copy

number, transcription, transcript abundance and protein

synthesis rates in the chloroplast of the green algae

C. reinhardtii. To this end we combined approaches simi-

lar to those of Goodenough (1971) and Hosler et al. (1989)

who attempted either to inhibit transcription or to modify

chloroplast gene copy number. We show that despite

contrasted effects of changes in gene copy number on the

accumulation of some chloroplast transcripts, chloroplast

protein synthesis is mostly insensitive to a decrease in

gene copy number and that there is no close correlation

between transcript abundance and translation rate. Based

on recent studies (Heifetz et al., 2000), we also wished to

take into account a possible in¯uence of carbon metabol-

ism on the pattern of chloroplast gene expression.

Therefore, both sets of experiments were undertaken

with algae grown either in mixotrophic or in phototrophic

conditions. These differential growth conditions re¯ect (i)

ideal growth conditions commonly used for photosyn-

thetic mutants, i.e. acetate containing medium and low-

light (4 mE m±2 sec±1) and (ii) truly phototrophic conditions

for strains that are not impaired in photosynthesis, i.e.

minimum medium with bubbling of 5% CO2(g) under

higher light intensity (20 mE m±2 sec±1).

Results

Chloroplast gene copy number and transcript

accumulation levels for cells grown under mixotrophic or

phototrophic conditions

To assess the contribution of gene copy number and

transcript abundance to the expression level of chloroplast

proteins, we ®rst compared these ®gures in the two

growth conditions widely used for C. reinhardtii cells, i.e.

in strictly phototrophic and in mixotrophic conditions.

DNA was extracted from the two types of cell cultures and

analysed by DNA-®lter hybridization experiments. The

results obtained for the atpB gene, taken as a marker of

the content in chloroplast DNA, were quanti®ed and

normalized to the signal obtained for the nuclear gene

Cblp2 (Figure 1a). Cells grown under mixotrophic condi-

tions displayed a chloroplast genome content twice as

high as that of cells grown in phototrophic growth

conditions, in agreement with the report of Lau et al.

(2000). Transcript accumulation levels were monitored by

RNA-®lter hybridization experiments and are shown in

Figure 1b. The signals obtained for various chloroplast

transcripts were quanti®ed and normalized to the signal

for the nuclear Cblp2 transcript. For psbD, petA, petD, psaA

and psaB, mRNA accumulation levels were reduced about

three times in cells grown in phototrophic growth condi-

tions when compared to cells grown in mixotrophic

growth conditions. The atpA and atpB transcripts were

more affected, their accumulation levels being about 10

times lower in phototrophic conditions. In contrast, psbA

Figure 1. Panel a: chloroplast genome content (assayed by southern-blot
experiments).
Q = relative chloroplast genome content in the indicated growth
conditions. Signals were normalized to the signal obtained with the
nuclear probe Cblp2.
Panel b: overall mRNA accumulation levels (assayed by northern-blot
experiments) in cells grown either in mixotrophic (left panel) or
phototrophic (right panel) conditions.
R = ratio of the mRNA accumulation levels in phototrophic conditions to
the levels obtained in mixotrophic conditions. Note that the lane
corresponding to phototrophic conditions is overloaded as shown by the
signal obtained for Cblp2.
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transcripts still accumulated in phototrophic conditions to

about 50% of their level in mixotrophic conditions.

Changes in transcript abundance upon a FdUrd

treatment

The thymidine analog 5-¯uoro-2¢-deoxyuridine (FdUrd) is

known to inhibit speci®cally the chloroplast thymidilate

synthase reducing further accumulation of thymidine in

the chloroplast (Wurtz et al., 1977). Incubation of

C. reinhardtii cells with 1 mM FdUrd for a week or longer

induces mutations in the chloroplast genome (Wurtz et al.,

1979). However, treatment of cells at lower FdUrd concen-

trations (0,5 mM) and for shorter time periods (48 h) has

limited mutagenic effects while it still inhibits chloroplast

DNA replication. Cells thus display a drop in the number of

copies of the chloroplast chromosome after several rounds

of mitotic divisions (Hosler et al., 1989; Lau et al., 2000;

Matagne and Hermesse, 1981; Wurtz et al., 1977). Here, we

monitored the reduction in chloroplast genome copy

number after 24 h and 48 h of FdUrd treatment by DNA-

®lter hybridization experiments (Figure 2a). Taking the

atpB gene as a marker of the chloroplast genome, we

observed the expected drop in genome copy number upon

FdUrd treatment. As a control, we used a probe against the

rbcS and/or Cblp2 (not shown) genes whose abundances

are insensitive to FdUrd, because of their nuclear origin.

We observed variations in the extent of reduction in

chloroplast gene copy number in independent experi-

ments relative to one growth condition, probably because

of the non-irreversible but competitive mode of inhibition

of FdUrd on chloroplast replication (Hosler et al., 1989)

and/or changes in the chloroplast content for thymidine,

that should be affected by the metabolic state of the cell.

Furthermore, reduction of chloroplast gene copy number

appeared to be more pronounced when cells were grown

mixotrophically. The decrease in chloroplast genome copy

number for cells grown phototrophically showed an

average reduction factor of 2 that is close to previous

reports by Matagne and Hermesse (1981) and Hosler et al.

(1989), whereas for cells grown mixotrophically, the

decrease in genome copy number was consistantly larger,

reaching as much as 20 in one experiment (close to the

report by Lau et al., 2000).

The rate of chloroplast transcription before and after a

48-h FdUrd treatment was then assayed by RNA-pulse

labelling experiments. To this end we used either freeze-

thaw-permeabilized (Gagne and Guertin, 1992) or toluene-

permeabilized cells (Guertin and Bellemare, 1979). Both

Figure 2. Panel a: Reduction in chloroplast genome copy number after
FdUrd treatment for cells grown mixotrophically (left panel) or
phototrophically (right panel). The DNA-®lter hybridizations show the
signals obtained for the chloroplast atpB and the nuclear rbcS genes,
after 24 h or 48 h of treatment with 0.5 mM FdUrd.
Panel b: Transcript accumulation levels after FdUrd treatment. The RNA-
®lter hybridizations show the overall transcript accumulation levels after
24 h or 48 h of 0.5 mM FdUrd treatment for various transcripts, from cells
grown either mixotrophically (left) or phototrophically (right). The nuclear
transcript rbcS serves as a loading control.

Figure 3. Panel a: Reduction of the chloroplast gene copy number upon
FdUrd treatment assayed by DNA ®lter-hybridization. atpA: chloroplast
gene; Cblp2: nuclear gene. Reduction of the chloroplast genome copy
number was close to three in this experiment.
Panel b: RNA-pulse-labelling experiment in FdUrd treated cells. Cells
grown for 48 h in the presence (right) or absence (left) of 0.5 mM FdUrd
were pulse-labelled using thaw/freeze permeabilized cells according to
Gagne and Guertin (1992) with a-33P-UTP for 15 min in order to detect
transcription of chloroplast genes. The autoradiogram of labelled
neotranscripts hybridized to DNA restriction fragments ®xed on a nylon
membrane is shown. An overall drop in transcription yield upon FdUrd
treatment is observed. Similar results were obtained with another RNA
pulse-labelling method using toluene-permeabilized cells as described in
Guertin and Bellemare (1979) (not shown).
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methods gave the same qualitative information that is

illustrated in Figure 3 in the case of thaw/freeze permea-

bilized cells. The extent of FdUrd-induced reduction in

chloroplast gene copy number was approximately 3 in this

particular experiment (Figure 3a). It was accompanied by a

parallel decrease in the transcription rate of the four genes

that we assayed, atpA, atpB, petA and rbcL (Figure 3b).

This observation suggests that most if not all, copies of the

chloroplast chromosome are transcriptionally active in

Chlamydomonas. We then assayed the consequences of

the decreased rate of chloroplast transcription, due to the

reduction in genome copy number, on the abundance of

various chloroplast transcripts (Figure 2b and Table 1).

RNA-®lter hybridization signals obtained for nine chlor-

oplast transcripts, representative of the mRNAs for sub-

units of the ®ve major photosynthetic complexes, PSII, PSI,

Cytb6f, ATP-synthase and RubisCo, were quanti®ed and

normalized to the signal obtained for the nuclear transcript

rbcS. Given the fact that the extent of reduction in

chloroplast genome content was different in independent

experiments (see above), only one experiment by growth

condition is shown, and therefore no standard deviations

are indicated for the transcript accumulation levels.

However, the same qualitative variations of the various

transcript accumulation levels were reproducibly observed

in independent experiments. Under mixotrophic growth

conditions (Figure 2b, left panel), four transcripts, psbD,

petA, atpB and rbcL, showed little if any changes after 48 h

of FdUrd treatment. Three transcripts, psaB, psbA and

petD, showed a signi®cant but limited decrease reaching

about 50% of their initial level after 48 h of treatment. Last,

two transcripts, atpA and psaA, decreased extensively

after 48 h of treatment, reaching about 20% of their initial

accumulation level. Most of the chloroplast transcripts

tested behaved similarly when the FdUrd treatment was

applied to algae grown in phototrophic conditions. For

instance the levels of psbD, atpB and rbcL transcripts

Table 1. Chloroplast transcript accumulation after FdUrd or rifampicin treatment The table gives the mean value of the ratio of mRNA
accumulation levels after 48 h of treatment with FdUr or 6 h of treatment with rifampicin to the accumulation levels in the untreated
control. Northern blots were performed from one to ®ve times, depending on the experiment. Signals obtained for the different
chloroplast transcripts were normalized to the accumulation levels of the unaffected Cblp2 and/or rbcS transcripts, of nuclear origin
Standard deviations to the mean value of several experiments are indicated in brackets for the rifampicin experiment. As the ratio of
reduction in chloroplast gene copy number ¯uctuated between independent experiments (see text), accumulation levels shown for the
FdUrd treatment are relative to the described experiment only, and thus no standard deviation is indicated

48h FdUrd 6h rifampicin

Transcript Mixo. Photo. Mixo. Photo.

psbA 0.5 0.5 0.51(+/-0.01) 0.59(+/-0.08)
psbD 0.8 1.2 0.24(+/-0.13) 0.5(+/-0.13)
petA 0.9 0.4 0.30(+/-0.07) 0.02(+/-0.01)
petD 0.6 1 0.42(+/-0.06) 0.10(+/-0.01)
psaA 0.25 0.7 0.32(+/-0.03) 0.07(+/-0.01)
psaB 0.5 0.6 0.22(+/-0.01) 0.09(+/-0.01)
atpA 0.18 0.4 0.12(+/-0.08) 0.02(+/-0.01)
atpB 0.9 0.9 0.66(+/-0.14) 0.07(+/-0.02)
rbcL 1 0.9 0.38(+/-0.03) 0.24(+/-0.01)

Figure 4. Chloroplast protein synthesis after FdUrd treatment.
Cells were pulse-labelled in presence of cycloheximide (inhibitor of
cytoplasmic translation) with 14C-acetate for 5 min after 24 h or 48 h of
0.5 mM FdUrd treatment for cells grown either mixotrophically (left
panel) or phototrophically (right panel). An equal amount of cells was
loaded onto each lane. Correspondence between genes and proteins are
as follows: PSII complex: psbC (apo-CP43), psbB (apo-CP47), psbD (D2)
and psbA (D1). The b6f complex: petA (cyt f) and petD (SuIV). The PSI
complex: psaB (psaB). The ATP synthase complex: atpA (a) and atpB (b).
RubisCo: rbcL (LS, large subunit). The pulse-labelling experiments were
carried out on the same samples that were used for RNA extraction and
analysis.
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remained poorly sensitive to the FdUrd treatment whereas

the atpA transcript decreased most in both conditions

(Figure 2b, right panel and Table 1). However, the psaA

transcript became less sensitive to FdUrd in phototrophic

conditions while the petA transcript showed an opposite

behaviour.

Rates of chloroplast protein synthesis in FdUrd treated

cells

The contrasted behaviour of distinct sets of chloroplast

transcripts upon reduction of chloroplast genome copy

number, raised the possibility that the pattern of protein

expression in the chloroplast would be extensively modi-

®ed after FdUrd treatment. In particular, the rates of

synthesis of the atpA and petA products, the a subunit of

CF1 of the ATP synthase complex and the cyt f of the b6f

complex, could be altered after FdUrd treatment in

mixotrophic and phototrophic conditions, respectively.

The 14C-acetate-pulse labelling experiments of chloroplast

translates, performed with FdUrd treated cells, are shown

in Figure 4. In mixotrophic conditions (Figure 4, left panel),

although some limited decrease in protein labelling

occurred, we observed no major changes in the relative

rates of chloroplast polypeptide synthesis. In particular,

the moderate drop in labelling of the a subunit of the ATP

synthase after 48 h of FdUrd treatment did not match the

drastic drop in the accumulation of atpA transcripts. In

phototrophic conditions (Figure 4, right panel), only did

the large subunit of RubisCo (LS) show a signi®cant

decrease in synthesis rates after 24 h of FdUrd treatment.

The accumulation of chloroplast-encoded proteins was

not altered by the FdUrd treatment in either growth

condition, as revealed by gel electrophoresis and conven-

tional immunodetection experiments using speci®c anti-

bodies (not shown). Furthermore, the accumulation of the

whole set of proteins in thylakoid membranes was not

altered by the FdUrd treatment in either growth conditions

as monitored by membrane puri®cation and Coomassie or

silver staining of thylakoid proteins separated by gel

electrophoresis (not shown).

Changes in transcript abundance upon inhibition of

chloroplast transcription by rifampicin

Rifampicin selectively and irreversibly binds to the b
subunit of the E. coli RNA-polymerase, inhibiting further

transcription initiation (Campbell et al., 2001; McClure and

Cech, 1978; for a review see Richardson and Greenblatt,

1996). The same mode of action of rifampicin has been

described on the chloroplast-encoded, bacterial-like, RNA-

polymerase (Surzycki, 1969). Full inhibition of chloroplast

transcription can be obtained by treating cells for 1 h with

350 mg ml±1 rifampicin (Goodenough, 1971; Miller and

McMahon, 1974; Surzycki and Rochaix, 1971; Surzycki,

1969; and Guertin and Bellemare, 1979). We thus chose to

further investigate the transcript/translate relationship in

the chloroplast, using cells grown for 3 and 6 h in the

presence of 350 mg ml±1 rifampicin in either mixotrophic or

phototrophic conditions. A longer treatment with rifampi-

cin, up to 20 h, was lethal for the cells.

We ®rst assayed the ef®ciency of rifampicin in inhibiting

chloroplast transcription by RNA-pulse-labelling experi-

ments. In vivo transcription of ®ve chloroplast genes was

readily detected in the untreated controls using toluene

permeabilized cells (Guertin and Bellemare, 1979),

whereas no signal was obtained for atpA, petA, psbA

and rbcL when cells were treated with rifampicin for 6 h

(Figure 5). Therefore, chloroplast transcription of these

genes was fully inhibited in our experimental conditions,

which indicates that they are transcribed by a rifampicin-

sensitive RNA-polymerase of bacterial origin (PEP, or

Plastid Encoded Polymerase). Only did the atpB gene

show some residual transcription under mixotrophic

growth conditions (Figure 5, upper panel): a faint band

could still be observed for atpB after 6 h of rifampicin

treatment (< 1% of the control). This could be indicative of

the presence of a rifampicin-insensitive nuclear-encoded

polymerase (NEP) similar to the one which has been

described in studies with higher plant chloroplasts

(Hajdukiewicz et al., 1997; Hedtke et al., 1997). However,

this signal was not detected when the RNA pulse-labelling

experiment was performed on cells grown under photo-

Figure 5. Inhibition of chloroplast transcription by rifampicin.
Rifampicin was added for 6 h at 350 mg ml±1 to cells grown either
mixotrophically (upper panel) or phototrophically (lower panel), before
the labelling of neosynthesized mRNAs with 32P-a-UTP for 15 min using
toluene-permeabilized cells. The autoradiogram of labelled neotranscripts
hybridized to DNA restriction fragments ®xed on a nylon membrane is
shown.
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trophic conditions (Figure 5, lower panel). The experimen-

tal procedure used to assay in vivo transcription of

chloroplast genes has previously been assumed to allow

detection of chloroplast, but not nuclear, transcription

(Guertin and Bellemare, 1979; Kawazoe et al., 2000). In

agreement with this view, our attempts to detect tran-

scription of the nuclear genes rbcS and Cblp2 did not give

rise to any signal with this method (not shown).

We then addressed the stability of the transcripts in the

chloroplast by performing RNA-®lter hybridization experi-

ments (Figure 6). Given that the generation time of

C. reinhardtii in these asynchronous cultures is 5 h in

phototrophic conditions and 12 h in mixotrophic condi-

tions, cells should divide at most once or twice during the

duration of the rifampicin treatment. Therefore, assuming

that rifampicin completely blocks transcription soon after

addition, the level of the most long-lived transcripts should

decrease by a factor of 2 (for mixotrophic conditions) and 4

(for phototrophic conditions), due to their dilution during

the experiment. Transcript accumulation levels of various

chloroplast gene were analysed by RNA-®lter hybridization

experiments, quanti®ed and normalized to the signal

obtained for Cblp2 or rbcS (not shown), two transcripts

that are unaffected by the rifampicin treatment because of

their nuclear origin. One must note that, on Figure 6,

accumulation levels can not be compared between the two

growth conditions, because experiments were realised on

different days using different transfers of RNA to nylon

membranes and differently labelled probes. When grown

in mixotrophic conditions (Figure 6, left panel) a majority

of chloroplast transcripts from rifampicin-treated algae

behaved in the same way. Their accumulation level was

about 30% to 40% of that in untreated cells (Table 1). Two

transcripts showed contrasting behaviours: the atpA tran-

script decreased more severely, reaching about 10% of its

original level, whereas the atpB transcript was poorly

sensitive to rifampicin, still showing 70% of its original

accumulation level after 6 h of treatment (Table 1).

As a general rule, cells treated with rifampicin in

phototrophic conditions displayed a more drastic decrease

in their chloroplast mRNA content than their mixotrophic

counterparts. The majority of the transcripts dropped

below 10% of their original level after 6 h of rifampicin

treatment, with atpA and petA being the most affected

(Figure 6, right panel and Table 1). Noticeably, the atpB

transcript, whose accumulation level was poorly sensitive

to the rifampicin treatment in mixotrophic growth condi-

tions, was highly affected in phototrophic conditions. In

contrast, the psbA, psbD and rbcL transcripts showed a

comparable behaviour in both growth conditions

(Table 1).

Figure 6. Transcript accumulation levels after rifampicin treatment.
Cells were grown either under mixotrophic (left) or phototrophic (right)
conditions in the presence of 350 mg ml±1 of rifampicin for 3±6 h, and
transcript accumulation analysed by RNA-®lter hybridizations. The
nuclear transcript Cb lp2 served as a loading control.

Figure 7. Chloroplast protein synthesis after rifampicin treatment.
Upon addition of 350 mg ml±1 rifampicin for 3±6 h, cells were subjected to
a 5 min 14C-acetate protein pulse-labelling experiment in the presence of
cycloheximide. Labelled neosynthesized proteins were separated by gel
electrophoresis and proteins transferred to a PVDF membrane.
Radioactivity was revealed using a PhosphorImager (panel A). Loading
was controlled by directly blotting the PVDF membrane with an antibody
against CGE1, a nucleus-encoded protein (panel B). Correspondence
between genes and proteins are as indicated for Figure 5. The pulse-
labelling experiments were performed on the same samples that were
used for RNA extraction and analysis.
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Chloroplast protein synthesis in cells treated with

rifampicin

Under mixotrophic conditions, the rates of synthesis of

most chloroplast-encoded proteins did not decrease even

after 6 h of treatment with rifampicin, despite the signi®-

cant changes in transcript abundance that we observed in

several instances (Figure 7a, left panel). Here again, the

rate of synthesis of the a subunit of the chloroplast

ATPsynthase showed no signi®cant changes whereas the

corresponding atpA transcript dropped dramatically after

rifampicin treatment. The synthesis of cytochrome f even

seemed to increase slightly, whereas the accumulation

level of the corresponding petA transcript was much

reduced after 6 h of rifampicin treatment. We noted that

the synthesis of the PSII subunit D1, but not of D2 (another

subunit of PSII) decreased whereas the transcripts levels of

the two subunits were similarly affected. For cells grown

under phototrophic conditions, the dramatic drop in the

level of most chloroplast transcripts was not accompanied

by reduced rates of synthesis for most of the chloroplast

proteins. However, the pattern of protein labelling varied

markedly with the time of rifampicin treatment (Figure 7a,

right panel). LS showed a continuous and marked

decrease in its rate of synthesis after rifampicin treatment.

The synthesis of many polypeptides, among which the

ATP-synthase subunits a and b, cyt f and suIV from the

cytochrome b6f complex, appeared to be transiently up-

regulated (compare the 0 and 3 h lanes on the right panel

of Figure 7), then returning to either the initial level as for

the a subunit and cytochrome f, or even severely decreas-

ing as for the b subunit. Figure 7(b) shows direct

immunoblotting of the membrane with an antibody

against the nucleus-encoded Chloroplast GrpE homologue

1 (CGE1) protein (Schroda et al., 2001) that was used as a

loading control. The result shows that the 3 and 6 h lanes

are slightly overloaded, when compared to the untreated

control, but this can not on its own account for the up-

regulation of synthesis of most chloroplast translates at

the 3 h point. Furthermore, the up-regulation of synthesis

after 3 h of rifampicin treatment in phototrophic condi-

tions was reproducibly observed in three independent

experiments. The major PSII subunits, apoCP47/apoCP43/

D2 and particularly D1 showed a marked and continuous

increase in synthesis after 6 h of rifampicin treatment.

These changes in the rates of synthesis of the chloro-

plast±encoded products were not accompanied by any

signi®cant changes in their accumulation levels, as

checked by immunoblotting with speci®c antibodies (not

shown). Also, accumulation of thylakoid membrane

proteins was not altered by rifampicin treatment in either

growth conditions as monitored by membrane puri®cation

and Coomassie or silver staining of thylakoid proteins

separated by gel electrophoresis (not shown).

Discussion

A common feature of bacteria is that transcription rate and

mRNA abundance most often control the rates of protein

synthesis. Since chloroplasts derive from ancestral cyano-

bacteria, our aim was to provide a better view of the pre-

translational contributions to the expression of chloro-

plast-encoded proteins. The use of FdUrd and rifampicin in

two distinct growth conditions allowed us to demonstrate

that extensive changes in genome copy number, in

transcription rates and in the steady-state level of chloro-

plast transcripts are not directly correlated to changes in

the rate of synthesis of most chloroplast-encoded proteins.

Transcription of chloroplast genes

Using FdUrd as an inhibitor of chloroplast DNA replication,

we observed a parallel decrease in genome copy number

and transcription rates in the chloroplast. This supports

the view that most copies of the chloroplast chromosome

are transcriptionally active and that the RNA polymerases

are not present in limiting concentration. In most instances

however, the decreased rates of transcription due to lower

chloroplast ploidy, were not accompanied by signi®cant

changes in the abundance of the vast majority of the

chloroplast transcripts tested. Among the exceptions were

the decreased accumulation of psaA transcripts for algae

grown in mixotrophic conditions, of petA transcripts for

algae grown phototrophically and atpA transcripts in

either growth condition. The poor sensitivity of the post-

transcriptional step to FdUrd treatment can be readily

explained by the presence of limiting amounts of nucleus-

encoded factors that select a subset of neosynthesized

transcripts in the chloroplast, protecting them from

nucleolytic degradation after transcription. Therefore, the

concentration of these factors (and neither the genome

copy number nor the actual transcription rate) would

determine the abundance of transcripts in the chloroplast.

Nuclear factors that protect chloroplast mRNAs from

nucleolytic degradation by acting on their 5¢UTR have

been described for most of the chloroplast transcripts that

we tested but not for atpA (see Barkan and Goldschmidt-

Clermont, 2000; Nickelsen, 1998; Stern and Drager, 1998;

Wollman et al., 1999; Monde et al., 2000). If such a factor is

missing for atpA, its accumulation would be predicted to

follow the fraction of transcriptionally active chloroplast

chromosomes contrarily to the other transcripts that can

accumulate in the chloroplast in proportion to the concen-

tration of their nuclear-encoded stabilizing factors. An

additional prediction of this proposal is that the atpA

mRNAs should decline more severely than all other

chloroplast transcripts when transcription is blocked, a

behaviour that we indeed observed after treatment of the

algae with rifampicin.
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Relation between transcript accumulation levels and

rates of translation

A correlation between transcript accumulation levels and

protein synthesis rates has been established in some

instances in higher plants (Mullet, 1993; Pfannschmidt

et al., 1999; Rapp et al., 1992). However, other develop-

mental studies have shown that transcriptional activity is

not necessarily tightly linked to rates of chloroplast protein

synthesis, pointing to an extensive post-transcriptional

control of chloroplast gene expression (Mullet, 1988). The

analysis of several translation-defective strains of

C. reinhardtii has shown that the level of the non-trans-

lated transcript either increased, as for atpA (Drapier et al.,

1992), or decreased, as for psbA (Girard-Bascou et al.,

1992) or petA (Wostrikoff et al., 2001). Thus, as discussed

by Nickelsen (1998), there is no general rule linking

translation and mRNA stability in the chloroplast of

C. reinhardtii.

In the present study we found only in one instance, atpB,

some correlation between transcript abundance and trans-

lation rates. In the experiments where the accumulation of

atpB transcripts was mostly unaffected (namely after

FdUrd treatment performed in either growth condition or

rifampicin treatment of algae grown in mixotrophic con-

ditions) the rates of synthesis of the b subunit was not

affected. However, in the single experiment where the

accumulation level of the atpB transcript was dramatically

reduced (rifampicin treatment of algae grown in photo-

trophic conditions), the rate of synthesis of the b subunit

displayed a signi®cant decrease. In all other cases, our

study provides extensive experimental support to the lack

of a direct relationship between translation rates and

transcript abundance in C. reinhardtii chloroplasts. The

atpA and petA transcripts that decreased severely after

FdUrd or rifampicin treatment still allowed rates of protein

synthesis that were comparable to those observed in the

untreated control. For instance, in rifampicin-treated cells

grown phototrophically, as little as 2% of atpA and petA

transcripts were suf®cient to provide near wild-type syn-

thesis of the corresponding proteins. The fact that severely

reduced amounts of those transcripts still permits near

wild-type synthesis of the corresponding proteins may be

explained by either of two ways: (i) a smaller amount of

transcripts is more intensively translated or (ii) in the

regular growth conditions with no drug added, only a

subset of those transcripts is actually loaded onto poly-

somes for translation. That the concentration of chloro-

plast transcripts is not rate-limiting for translation is

consistent with a previous report by Hosler et al. (1989)

that a reduction in chloroplast genome copy number in

C. reinhardtii cells grown phototrophically produced a

decrease in the accumulation levels of the chloroplast

atpA, rpl2 and rbcL transcripts, whereas synthesis of the

corresponding proteins, the a subunit of ATP-synthase,

the r-protein L1 and LS remained largely unaffected

(however, the behaviour of LS reported by Hosler et al.

(1989) is in contrast with our data: we observed a reduction

in synthesis rate of LS for the FdUrd treatment performed

in phototrophic conditions). Overall, it appears that trans-

lation must be controlled by rate-limiting nucleus-encoded

factors imported in the chloroplast (for reviews see Hauser

et al., 1998 and Zerges, 2000), as has been documented for

pet494p (Steele et al., 1996) or pet111p (Green-Willms

et al., 2001), which are nuclear-encoded translational

activators of the COX3 and COX2 mRNA in yeast

mitochondria, respectively. Thus, as pointed out by

Hosler et al. (1989), there may be two distinct pools of

mRNA in the chloroplast, a pool of non-translatable

mRNAs and a pool of mRNAs that are activated for

translation by nucleus-encoded factors.

A remarkable illustration of the prominent role of

translational regulation can be found in our study of the

expression of the psbA and rbcL genes, which encode,

respectively, the PSII subunit D1 and LS: a similar decrease

in psbA transcripts in mixotrophically grown and photo-

trophically grown algae (for both the FdUrd and rifampicin

experiments) was accompanied in one case by a down

regulation in the synthesis of the D1 protein, whereas

it was up-regulated in the other case. This behaviour

re¯ects the complex translational regulation for this

PSII subunit that encompasses ribosome pausing

(Kim et al., 1991; Zhang et al., 2000) and is the most

sensitive to photoinduced damage (Danon and May®eld,

1994a, 1994b; Kim and May®eld, 1997; Trebitsch et al.,

2000). Up-regulation of the synthesis of the D1 subunit

in high light without signi®cant changes in psbA transcript

accumulation levels has also been reported by Shapira

et al. (1997). For rbcL, comparable accumulation levels

of the transcript in cells treated with FdUrd in either

growth conditions, led to a decrease in the synthesis rate

of the corresponding LS protein for cells grown photo-

trophically, whereas it remained constant for cells grown

mixotrophically.

Effect of growth conditions

Under standard conditions, our results are in agreement

with those published by Lau et al. (2000), i.e. that

C. reinhardtii cells grown mixotrophically contain about

twice as much chloroplast DNA as cells grown photo-

trophically. A likely explanation, given the shorter gener-

ation time of cells grown in phototrophic conditions (5 h)

than in mixotrophic growth conditions (12 h), is that

higher number of mitotic cell divisions per time unit lead

to an increased partitioning of non-replicated chloroplast

genomes, as is the case for bacteria. The lower decrease in

chloroplast genome copy number upon FdUrd treatment
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of cells grown phototrophically may also originate from

their lower polyploidy, if one assumes that there is a lower

limit for the number of chloroplast chromosomes required

for cell viability.

Photosynthetic activity and light quality are also known

to participate in the regulation of chloroplast genome

expression. At the transcriptional level, it has been shown

that psbD, psbC and petG genes are under the control of a

blue-light activated promoter in higher plant chloroplasts

(Christopher et al., 1992; for a review see Stern et al., 1997).

In C. reinhardtii, variations in chloroplast transcription

rates were observed in a circadian way, with a peak of

transcription at the onset of the light period (Leu et al.,

1990). These results have been extended to a general light-

dependent variation in chloroplast mRNA levels, that are

due to both transcriptional and post-transcriptional regu-

lations, the degradation of chloroplast transcripts being up

to ®ve times higher in the light period when compared to

the dark period of synchronously grown cultures (Salvador

et al., 1993). We observed a similar change in chloroplast

mRNA stability when comparing the rifampicin-treated

algae grown under mixotrophic or phototrophic condi-

tions. Only did the rbcL transcripts show limited destabi-

lization in phototrophic conditions and the two PSII

transcripts tested (psbA and psbD) remained as stable as

in mixotrophic conditions. All the other mRNAs tested

displayed a severe drop in transcript stability, their

degradation being four to ®ve times higher in phototrophic

conditions. The higher stability of the psbA transcript

correlates well with the limited changes in its abundance

when changing growth conditions (Figure 1b). The com-

parable stability of the rbcL transcript in both conditions is

in good agreement with a report by Shiina et al. (1998)

showing that in tobacco, accumulation levels of rbcL

transcripts are independent of light, although in their

case modi®cation of transcription rate and mRNA stability

appeared to play a role. On the other hand, this signi®-

cantly lower life-time of most chloroplast transcripts for

cells grown phototrophically fully accounts for their lower

steady-state mRNA levels, when compared to cells grown

mixotrophically, non-regarding the limited difference in

gene copy number (by only a factor of 2). Particularly, the

very short half-life of atpA and atpB transcripts in

phototrophic growth conditions (Figure 6, right panel)

may explain on its own the 10 times drop in their steady

state accumulation levels when compared to cells grown

mixotrophically (Figure 1b).

The decreased half-life of atpB and psaB in phototrophic

conditions may be due to the same degradation process

that is triggered by DTT for these two transcripts (Salvador

and Klein, 1999), suggesting a role of thioredoxin medi-

ated regulations of chloroplast transcript stability. Further

support for a regulatory role of thioredoxins in photo-

trophic conditions comes from the examination of the

pattern of synthesis of chloroplast-encoded proteins in

phototrophically grown algae treated with rifampicin for

6 h (Figure 7, right panel): it became enriched in its PSII

components. Several reports suggest that translation of

the psbA transcript is strongly enhanced under photo-

trophic growth conditions due to a translational activation

complex that preferentially binds the psbA messenger in

the light through a thioredoxin-controlled mechanism

(Danon and May®eld, 1994a, >1994b; Fong et al., 2000;

Trebitsch et al., 2000). It thus appears that photosynthetic

activity has a major impact on chloroplast gene expres-

sion, most likely through the action of redox activated

regulatory factors.

Overall, the fact that chloroplast protein synthesis rates

are mostly insensitive to mRNA accumulation levels

allows the algae to respond to physiological changes in

chloroplast genome copy number and transcript accumu-

lation levels that naturally take place, when the growth

conditions vary with naturally occurring changes in avail-

ability in carbon sources. Post-transcriptional regulatory

mechanisms therefore offer a good preservation of

photosynthetic competence in changing environmental

conditions, although gene copy number and mRNA levels

in the chloroplast would be affected.

The lack of correlation between gene copy number,

transcript abundance and protein translation in the chloro-

plast illustrate the deep evolution in gene expression that

has developed with the engulfment of a prokaryote in a host

cell. The control of chloroplast protein expression by

nuclear-encoded factors provides the framework for our

current understanding of these speci®c traits of organellar

gene expression. How these nuclear-encoded factors are

delivered to their targets in the organelle therefore stands

as a key issue for further studies of chloroplast biogenesis.

Experimental procedures

Strains and growth conditions

The C. reinhardtii wild-type (A1, mt-) strain, a derivative of the
137c strain presented in Harris (1989) was used for all the
described experiments. For mixotrophic growth conditions, cells
were grown in a liquid Tris-Acetate-Phosphate (TAP) medium
(pH 7.2), as described in Harris (1989), under continuous low light
(4 mE m±2 s±1) at 25°C and agitation. For phototrophic growth
conditions, cells were grown in a minimum medium (pH 7.2)
(comparable to the HS medium described in Harris (1989)) under
an illumination of 20 mE m±2 s±1 and with the addition of 5%
bubbled CO2(g) at 25°C and agitation.

Treatment with drugs: FdUrd treatment

Cells were incubated for up to 48 h with 0.5 mM of 5-¯uoro-2¢-
deoxyuridine (Sigma), a treatment known to reduce chloroplast
genome copy number (Wurtz et al., 1977).
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Rifampicin treatment

Cells were incubated for up to 6 h with 350 mg ml±1 of rifampicin
(Sigma) to inhibit transcription of chloroplast but not nuclear
genes (Surzycki, 1969).

RNA analysis

Total RNA was extracted and analysed by Northern blots as in
Drapier et al. (1998). The bands shown in Figures 1,2 and 6
correspond only to the mature mRNAs of the corresponding
genes (in some cases, maturation intermediaries were observed,
but were discarded for quanti®cations and not included in the
®gures). Radiolabelled gene-speci®c probes were derived from
intragenic DNA fragments of nuclear or chloroplast origin
(Table 2). Labelling was performed for each probe using the
Nonaprimer Labelling Kit (Quantum, Appligene) with 5 ng of DNA
and 25 mCi of a-33P- dATP.

In vivo RNA-pulse labelling

Cells were assayed for de novo chloroplast RNA synthesis using
toluene permeabilized cells as described in Guertin and Bellemare
(1979) with the following modi®cations: cells were solubilized
with 1% toluene and pulse-radiolabelled with 165 mCi ml±1 of
a-32P-UTP (400 Ci mmol±1, Amersham) for 15 min RNA, extracted
as described in Drapier et al. (1998), was then hybridized with
unlabelled DNA restriction fragments of chloroplast or nuclear
origin separated by gel electrophoresis and transferred to a nylon
membrane. RNA pulse-labelling experiments were also per-
formed using thaw/freeze permeabilized cells according to
Gagne and Guertin (1992) with the modi®cations described in
Sakamoto et al. (1993).

DNA-®lter hybridizations

Total DNA was prepared as described in Rochaix (1980), separ-
ated by gel electrophoresis, transferred to nylon membranes and
probed with radiolabelled intragenic DNA fragments from
chloroplast or nuclear origin.

Protein analysis

Pulse-labelling experiments were carried out as described in
Drapier et al. (1992) with 5 mCi ml±1 of 14C-acetate (50 mCi mmol±1,
Amersham) in the presence of an inhibitor of cytoplasmic

translation (6,6 mg ml±1 cycloheximide, Sigma). Proteins of
solubilized cells were separated in urea/SDS-polyacrylamide
gels as described in Piccioni et al. (1981) and transferred to a
PVDF membrane which was then exposed in a PhosphorImager
to detect radiolabelled proteins. Loading of the gels was con-
trolled by immunoblotting of the PVDF membrane with anti-
bodies directed against nucleus-encoded proteins (CGE1
(Schroda et al., 2001), OEE2 and/or OEE3).
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